The solutions are in order of the questions for version 1.
(1). Correct answer A

The electric fields in C and D are zero, In A, B, the x -component cancels and we just have a y-component. In A the y-component resulting from each of the charges points down and hence these all add; in B, some point down and some point up, partially canceling the field strength.
(2). Correct answer is B

The force Q E must equal ma; hence $\mathrm{Q}=(.275)(13) / 5=.72 \mathrm{C}$
(3). Correct answer is B

The field due to a large plate in independent of the distance from the plate. Hence the field contributions from the negative and positive charges exactly cancel, giving zero.
(4). Correct answer is D

Plugging in the numbers, the electric force if

$$
\frac{\left(9 \times 10^{9}\right)\left(20 \times 10^{-6}\right)^{2}}{(150)^{2}} \simeq 1.5 \times 10^{-4}
$$

The gravitational contribution is almost completely negligible
(5). Correct answer is B

There is no y-component from the $Q=-1 \mu C$ charge; using the fact that the distance is 2 m and that the y -component is proportional to sine of the angle between the x -axis and the vector to the charge location, the other charge gives a negative y-component with magnitude

$$
\frac{\left(9 \times 10^{9}\right)\left(2 \times 10^{-6}\right)}{(2)^{2}} \frac{1.6}{2} \simeq 3600
$$

(6). Correct answer is D

The force is just

$$
\frac{\left(9 \times 10^{9}\right)\left(2 \times 10^{-6}\right)\left(1^{-6}\right)}{(1.6)^{2}} \simeq .007
$$

(7). Correct answer is E

This is the field pattern for an electric dipole; the two charges are equal and have opposite signs and there are field lines (and hence non-zero field values) at the two points. Hence the answer is E.
(8). Correct answer is A

By Gauss' law, there must be a total of -300 nC spread around the inner surface; the charge density is then this charge, divided by the surface area of $4 \pi(.8)^{2}$.
(9). Correct answer is D

The field is always zero inside a conductor
(10). Correct answer is C

The total charge interior to $\mathrm{r}=1.5$ is -200 nC . The field is therefore

$$
\frac{\left(9 \times 10^{9}\right)\left(-200 \times 10^{-9}\right)}{(1.5)^{2}} \simeq-800
$$

