
Physics 161: Black Holes: Lecture 6: 14 Jan 2011

Professor: Kim Griest

6 Geodesics: Moving in “straight lines” through curved space-
time

We saw that gravity curves time and space. A very important result is how things move in curved space.
The basic principle is that things move on paths that are as “straight” as possible. These can be defined
as the paths which extremize the distance between two points, and are called geodesics. In 3-D Euclidian
geometry a straight line is defined as the shortest distance between two points, and Newton’s law say in
the absense of outside forces particles move along such lines. It is similar in GR, but sometimes it is the
“maximum” invariant interval which is relevant, not the minimum. That is why we say “extremizes” the
distance instead of minimizes.

To get an idea of this, consider the 2-D analogy of an ant crawling on the surface of an apple. The ant
is forced to follow the curved 2-D space of the apple skin, but suppose it walks as “straight” as possible,
i.e. not veering to the left or right. As it walks from one side of the apple to the other coming near the
stem, the ant will be “deflected” and come away from the stem at a different angle than it approached
the stem. If the ant is close to the stem it could even circle the stem continually while still following the
“geodesic”. This should seem similar to the analogy of the two surveyors.

Now consider two points on opposite sides of the stem and ask which path is the shortest between
them (the geodesic). Note that without the curved surface the shortest path would be quite different.
However, the metric requires us to stay on the surface.

If we want to calculate the motion of objects in GR, we need to be able to find the geodesics. By
finding them we will be able to derive Newton’s laws from the Schwarzschild metric, as well as Einsteinian
corrections Newton’s laws. We can find out the real answer obeyed by actual objects in the solar system.
We will also be able to find out how objects move around black holes.

6.1 Geodesics and Calculus of Variations

GR says that the motion of a particle that experience no external forces is a geodesic of the spacetime
metric. One can summarize GR in two statements: 1. Matter and Energy tell spacetime how to curve.
2. Curved spacetime tells matter and energy how to move. In solving for the geodesics we are finding
how matter and energy (light) move.

In 3-D Euclidian space the definition of a geodesic, aka “straight line” is the shortest distance bewteen
two points. Mathematically this can be found from calculus of variations on the metric distance. The
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differential distance ds =
√
dx2 + dy2 + dz2 can be integrated between two end points to find

s =
∫ b

a

ds =
∫ b

a

√
1 + (dy/dx)2 + (dz/dx)2dx,

where we factored out a dx so the integral is done over the x-axis. Note now the integrand contains the
derivatives of the the functions y(x) and z(x) which define the path. How do find the path (functions
y(x) and z(x)) that minimize s? We need a general method. This method is called the “calculus of
variations” and you probably learned it in calculus. However, I will remind you of how it is done. If you
haven’t seen it before, that’s ok, since I’ll show you all you need. This is beautiful and fun math that is
used throughout advanced physics.

The basic idea is to minimize ds the same way you minimize any function is calculus: take its
derivative, set it to zero, and solve. This solution will be the geodesic, that is the extremal path. This
method works on curved surfaces since ds measures the actual distance following the curved surface. It
works the same way in GR; you just add the time part of the metric.

6.2 Geodesics as equations of motion

A geodesic on pure spatial manifold (e.g. curved surface) is a line. For example, straight lines on a plane,
or great circles on a sphere surface. In GR the geodesics include time and so are actually the equations
of motion! You can understand this by remembering the distinction between time and space. One has
choice in spatial motion, but one is forced by nature to move forward in the time direction: 1 sec per
sec. You will hit the year 2011 no matter what you do. Now in flat space a possible geodesic is one in
which you don’t move in space at all: dx = dy = dz = 0. Then ds = dt is an extremal path and you
just sit there getting older. However, if spacetime is curved, then motion in dt can require motion in dx!
Think of the surveyor analogy, where motion north (z) required motion in the x and y direction to stay
on the surface of the Earth. Thus since motion in t direction is forced, motion in the x (or other spatial)
direction will also be forced. Thus you have the geodesic requiring dx/dt 6= 0. dx/dt is a velocity, so you
can’t stay at rest and be on the geodesics. This is how gravity attracts things and why geodesics near a
mass require bodies to fall towards the mass center. Let’s do some math.

6.3 Euler-Lagrange Equations

To get used to calculus of variations, let’s do a calculation some of you have already done: Lagrange’s
equations in classical mechanics. Then we will do it on metrics. Doing it several times is necessary and
I highly recommend you go over all these calculations at home several times.

We want to extremize the integral s =
∫
ds, which can be written s =

∫
(ds/dt)dt, where we have

factored out a t. We can factor out any variable we want so as to make the integrating easier. As an
example, consider the general “least action” integral

S =
∫
Ldt,

where L is called the Lagrangian. In our example L = ds/dt, but in regular classical mechanics the
Lagrangian is L = T − V = 1

2mẋ
2 − V (x), where ẋ = dx/dt = vx, T is the kinetic energy, and V (x)

is the potential energy. (Here we used only the x and t dimensions.) Thus for 1-D classical mechanics
S =

∫ b
a

( 1
2mẋ

2 − V (x))dt is called the action, and the equations of motion, F = ma, with F = −dV/dx
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are found minimizing this action (principle of “least action”). In our problem we are trying to find the
path that gives the shortest (or longest) distance along the path between two fixed points.

Let’s do it first in general and get the equations.

S =
∫
L(x, y, z, ẋ, ẏ, ż, λ)dλ,

where we explicitly put in the velocities vx, vy, and vz as variables that have to be solved for, and have
factored out the general variable λ ( usually just time). This lambda is called the “affine parameter” and
is the variable you use to trace along the geodesic path. In the above, the dot means differentiating with
respect to λ, i.e. ẋ = dx/dλ. Now we take the “variation” of this integral δS using the chain rule and
set it to zero: δS = 0, and solve.

δS =
∫ (

∂L

∂x
δx(λ) +

∂L

∂ẋ
δẋ+

∂L

∂y
δy + · · ·

)
dλ = 0.

Next note that δ(ẋ) = δ dxdλ = d
dλδx, where δx(λ) is a small deviation from the extremal path. Now

integrate by parts the term with the δẋ, by using:∫ b

a

udv = uv|ba −
∫ b

a

vdu.

∫ b

a

∂L

∂ẋ
δẋdλ =

∫ b

a

∂L

∂ẋ

d

dλ
(δx)dλ =

∂L

dẋ
δx|ba −

∫ b

a

d

dλ

∂L

dẋ
δxdλ.

We want a path defined by x(λ), y(λ), etc. that goes from point a to point b. Thus we want δx(λ),
the variation of the path from the geodesic to be zero at the end points. That is δx(λ = a) = 0 and
δx(λ = b) = 0 (and similarly for δy and δz). Thus the first term on the right hand side of above equation
vanishes, and the equation becomes:

0 =
∫ (

∂L

∂x
− d

dλ

∂L

∂ẋ

)
δxdλ+ y and z parts.

The final step in getting our Euler-Lagrange equations is to note that the variation in the path δx(λ),
δy(λ), and δz(λ) is completely arbitrary. Thus for the integral as a whole to vanish, the integrand itself
must vanish everywhere. That is, to be true for every possible function δx(λ), the parts of the intregrand
multiplying δx, δy, and δz must be zero. Thus we have the Euler-Lagrange equations:

∂L

∂x
− d

dλ

∂L

∂ẋ
= 0.

∂L

∂y
− d

dλ

∂L

∂ẏ
= 0.

∂L

∂z
− d

dλ

∂L

∂ż
= 0.
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6.4 First Example of Euler-Lagrange equations: classical mechanics

As a first example of the use of The Euler-Lagrange equations, let the Lagrangian be L = T − V =
1
2mẋ

2 − V (x) and let λ = t. Then ∂L
∂x = −∂V∂x = F , where we used the normal definition of force as

the derivative of the potential energy. Since v = ẋ, ∂L
∂ẋ = mẋ, and d

dλ
∂L
∂ẋ = d

dtmẋ = ma, where the
acceleration a = dv/dt. Thus the Euler-Lagrange equations found by extremizing the action is just
F = ma. This might seem like a lot of work to get something you already know, but the beauty of the
method is that it works in difficult situations and in difficult coordinate systems. It is usually a lot easier
to write down the kinetic and potential energy than it is to use the vector form of F = ma in complicated
situations.

6.5 Second example of Euler-Lagrange equations: Flat space geodesics

Now let’s extremize the 3-D flat space metric to see if the shortest distance between two points is indeed
a straight line! So s =

∫
ds, with

ds =
√
dx2 + dy2 + dz2 =

√
1 + ẏ2 + ż2dx,

where we have chosen λ = x, and L =
√

1 + ẏ2 + ẋ2. The y Lagrangian equation thus reads:

d

dx

∂L

∂ẏ
− ∂L

∂y
= 0,

or
d

dx

(
1
2

(1 + ẏ2 + ż2)−1/22ẏ
)
− 0 = 0,

or
ẏ√

1 + ẏ2 + ż2
= constant.

For the z equation we find similarly,

ż√
1 + ẏ2 + ż2

= constant.

Dividing the y equation by the z equation we get ẏ/ż = constant, so ż = c1ẏ. Substituting this into
the y equation, we get ẏ/

√
1 + ẏ2 + c21ẏ

2 = constant. Since the only variable in this entire equation is
ẏ, solving this equation for ẏ will give a constant. Thus we find the Euler-Lagrange equations for the
extremal distance between two points are dy/dx = my, and dz/dx = mz, where my and mz are some
constants found by the boundary condition. Thus y = myx + by and z = mzx + bz, the equation for a
straight line in 3-D. This again might seem like a lot of work to prove that the shortest distance between
two points is a straight line, but the method is general.

Before going on to extremize the invariant interval in a spacetime metric, I want to do the last problem
again and show you a useful trick. In the above we used x as the affine parameter. Instead we could have
used s itself. Thus we write our integral as s =

∫
ds, with the Lagrangian L = 1! However we write this

‘one’ in a special way:

ds =
√
dx2 + dy2 + dz2 =

√
(
dx

ds
)2 + (

dy

ds
)2 + (

dx

ds
)2ds =

√
ẋ2 + ẏ2 + ż2ds,
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where now L = 1 =
√
ẋ2 + ẏ2 + ż2. As before in the Euler-Lagrange equations the term ∂L/∂x = 0, and

similarly for the y and z equations, so they reduce to:

d

ds

(
ẋ√

ẋ2 + ẏ2 + ż2

)
= 0,

and similarly for the y and z equations. But since L = 1 is a constant it comes out of the differential,
becoming

d

ds

(
ẋ

L

)
= dẋ/ds = 0.

This says that ẋ = dx/ds = constant, or x = mxs+ bx, and similarly, y = mys+ by, and z = mzs+ bz.
Again the equation for a straight line, with s being the distance traveled along the line, but with less
algebra.

6.6 Geodesics in Minkowski spacetime

Next we use the Euler-Lagrange equations to extremize the invariant interval, ds2 = −dt2 + dx2 + dy2 +
dz2, between two events in Minkowski spacetime. This will give us the equations of motion of Special
Relativity! Let’s use proper time τ as the affine parameter: dτ =

√
−ds2. We write s =

∫
dτ =∫ √

dt2 − dx2 − dy2 − dz2 =
∫ √

ṫ2 − ẋ2 − ẏ2 − ż2dτ , where ṫ = dt/dτ , ẋ = dx/dτ , etc. Since basically
τ = s, here again the Lagrangian L = 1 =

√
ṫ2 − ẋ2 − ẏ2 − ż2.

Noting that ∂L/∂t = 0, and similarly for ∂L/∂x = 0, etc. the Euler-Lagrange equations become

d

dτ

∂L

∂ṫ
= 0,

and
d

dτ

∂L

∂ẋ
= 0,

and similarly for y and z. Thus as we move along the path (varying τ to move along the geodesic) we
have 4 conserved quantities, ∂L

∂ṫ
= constant, ∂L

∂ẋ = constant, etc. Explicitly, these give ∂L/∂ṫ = ṫ/L =
ṫ = constant, and ∂L/∂ẋ = ẋ = constant, so our equations are ṫ = ct, ẋ = cx, ẏ = cy, and ż = cz, or
t = ctτ + t0, x = cxτ + x0, etc., where the ct,cx, t0, x0, etc. are constants.

To find the values of the constant let’s simplify to only the x direction and let time t start with τ = 0, so
t = ctτ . Then x = cxτ+x0 = (cx/ct)t+x0, and we recognize the combination cx/ct = vx the velocity in the
x direction. Thus cx = ctvx. Now evaluate the Lagrangian L = 1 =

√
ṫ2 − ẋ2 =

√
c2t − c2x =

√
c2t − c2t v2

x,
or 1 = ct

√
1− v2

x. Thus ct = 1/
√

1− v2
x = γ, the Lorentz factor, and we have as our geodesics the

equations of special relativity: motion in a straight line with time dilation included: t = γτ , x = vxt+x0,
etc.

Note that it is possible to have all the constants vx = vy = vz = 0, so just t = τ (standing still aging)
is a geodesic.

In summary, what did here is extremize (in fact maximize) the proper time between two events to find
the geodesics. Thus the geodesic is that path for which the maximum time passes on the wrist watch
of the observer traveling that path. [It is maximum, rather than minium due to the minus sign in the
metric.] Note that this is basically the answer to twin paradox. The twin that went out and then back
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did not travel a geodesic, they accelerated three times, while the stay at home twin did not accelerate
and therefore followed a geodesic. Thus we understand why the stay at home twin ages more (in fact
ages maximally!). Whenever someone accelerates, they leave their geodesic and therefore are aging less!
The solution to the twin paradox is also easily understood using a spacetime diagram. Both twins start
together at the origin. One twin stays on Earth (worldline is geodesic going straight up). The other
accelerates close to the speed of light (worldline close to 450). The proper time for the speedy twin is
very small; remember the hyperbola of constant proper time. Halfway out, the speedy twin accelerates
again (leaves the geodesic again), and speeds home, meeting up with the first twin. From this it is clear
that if one minimized the proper time, it would require accelerating to the speed of light for half the time
and then coming back with a total proper time approaching 0. We see that actual geodesics maximize
the proper time.
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