
Lecture 2 Notes:  06 / 28

The Simple Pendulum:  Force Diagram

A simple pendulum consists of a small mass suspended on an approximately 
massless, non-stretchable string.  It is free to oscillate from side to side.  The forces 
acting on the mass are the force of gravity and the tension in the string:

The tension cancels out the component of mg that lies along the string; this keeps the 
object from accelerating in the direction of the string, and thus keeps the string's 
length constant.  The net force is simply the remaining component of mg, which is 
pointed perpendicular to the string and is equal to:

(We have made the net force negative since it points in the direction of decreasing θ). 

Equations of Motion

The mass travels along an arc on a circle; the displacement along the arc is given by
x = Lθ and so the acceleration is given by a = Lα, where α = d2θ/dt2.  Thus, Newton's 
Law gives



This is not Hooke's Law, since a sine function appears on the right hand side. 
However, for small angles, the sine function can be expanded as follows:

The angle here must be expressed in radians.  If the angle is sufficiently small, then 
we can just keep the first term in the expansion, and replace sin(θ) with θ.  Our 
equation of motion then becomes

This is clearly the equation of motion for a harmonic oscillator, with θ playing the 
role of x, α taking the role of a, and k = mg / L. Thus, for small displacements, the 
pendulum will oscillate with simple harmonic motion (this is just another example of 
simple harmonic motion being a nearly universal behavior for systems near 
equilibrium).

Using the results from the previous lecture, the pendulum's angular frequency, 
frequency and period are:

Note that the pendulum's frequency does not depend on how heavy an object is 
attached to the string:  all masses oscillate with the same frequency.  However, the 
pendulum is sensitive to the length of the string and the acceleration due to gravity.

Energy of the Pendulum

The pendulum only has gravitational potential energy, as gravity is the only force that 
does any work.  Let us define the potential energy as being zero when the pendulum 
is at the bottom of the swing, θ = 0.  When the pendulum is elsewhere, its vertical 
displacement from the θ = 0 point is h = L - L cos(θ) (see diagram)



The potential energy of the pendulum is therefore

For small angles, this turns out to correspond to the potential energy of the harmonic 
oscillator, just as the force does.  We can expand the cosine function as follows:

This gives the following expression for U:

The total energy of the pendulum is the potential energy at the maximum 
displacement, when the displacement is equal to the amplitude:

Conservation of energy therefore gives a kinematic equation for the velocity as a 
function of deflection angle:

Note that in the above expressions, the amplitude A has units of radians, and 
measures the maximum deflection angle.  This is unlike the case of a mass on a 
spring, where the amplitude has units of distance.

Some problems:

1.  If you want a pendulum to have a period of 1 second, how long should the 
pendulum be?

2.  If you take the same pendulum to the Moon, where g = 1.68m/s2, what will be its 
period there?



Pendulum clocks:

Since the pendulum's period is not very consistent and depends only the pendulum 
length and the force of gravity, pendulums were historically used in clocks.  An arm 
would swing back and fourth every second, or several seconds.  There would be a 
spring-loaded driving force that would keep the arm going, and a mechanism 
coupling it to the machinery of the clock.

These devices were reasonably good at keeping time, but sensitive to variations in 
local gravity.  A pendulum clock made for one location would not necessarily keep 
good time in another.

Problem:

Suppose a pendulum clock is made to run with g = 9.810 m/s2.  What would be the 
error, in seconds per day, if you moved the clock to a location with g = 9.813 m/s2?

Since the period is inversely proportional to the square root of g, the new period is

The clock would therefore run slightly fast (it would take slightly less than a second 
to move the second hand once).  How many seconds' error would accumulate per 
day?  Well, in a 24-hour period, the number of seconds counted by this clock would 
be:

However, a day only has 86,400 seconds.  Therefore, this clock would run fast by 13 
seconds per day in the new location.

Damped Oscillators

Now we will add a particular kind of frictional force to our oscillating systems.  This 
kind of force, called linear damping, is proportional to minus the velocity:

The force is directed opposite to the velocity, so it will always slow the object down, 
as a friction force must.  



Linear damping is not necessarily the most common type of friction - we have seen 
kinetic friction before, which does not depend on the speed (but does depend on the 
direction of the velocity, being always directed opposite to it).  Friction coming from 
air resistance is typically quadratic.  

Linear damping does occur when an object moves through a viscous medium.  This is 
used in shock absorbers.  Also, the internal friction in a spring that eventually causes 
an oscillating mass on a spring to stop, is well approximated by linear damping.

If we do have linear damping, our equation of motion becomes:

We can try an exponential solution to this equation.  This represents a mass that 
begins away from equilibrium, but approaches the equilibrium point at later times, 
without oscillating at all.  This behavior is seen in strongly damped systems.  We 
guess the following solution:

Plugging this into our equation, we obtain

Note that this only gives a real number if b2 >= 4mk.  So, this is indeed a solution 
that is only valid for sufficiently high damping; the behavior at lower damping is 
somewhat different.  Oscillators that do satisfy this condition are called overdamped 
oscillators, which is a strange name, since they don't oscillate at all!  Both possible 
values of γ  give valid solutions:  in fact, any combination of the two solutions is a 
valid solution.  In general,

The exact values of the amplitudes A and B depend on the initial conditions, as shown 
in the following problem:



Problem:

An overdamped oscillator starts at rest with a displacement x0 from the origin.  What 
is the displacement of this oscillator as a function of time?

We know that the oscillator starts at x = x0 at t = 0.  Therefore,

We have two unknowns, however, A and B, so we need another equation.  That is 
provided by the fact that the oscillator starts at rest:

Using the first equation, B = x0 - A.  Plugging this into the second equation,

With the constants A and B determined, we can now find the displacement as a 
function of time.  It is given by:

For a typical choice of parameters, the graph of x(t) looks something like this:



Underdamped Oscillators

An underdamped oscillator has b2 < 4mk.  In that case, we need a somewhat different 
solution.  Unlike overdamped oscillators, underdamped oscillators do oscillate, but 
the amplitude of the oscillations decreases exponentially.  We will try a combination 
of a cosine and an exponential function as a solution:

This is getting a bit complicated.  Inserting this into our equation of motion and 
grouping terms by sine and cosine, we get:

In order for this equation to hold at all times, both prefactors must be zero.  We thus 
have a system of equations:

Solve the second equation for γ, and plug into the first:

The angular frequency is shifted from the value for the simple, undamped harmonic 
oscillator.  However, for small damping, the shift is not large.  The quantity under the 
square root is positive for  b2 < 4mk, so this solution is indeed valid over the entire 
region where the overdamped solution is not.



For an underdamped system, the solution looks something like this.  The amplitude 
decays exponentially while the system oscillates about the equilibrium point.

Problem:

A 1kg mass on a spring with k = 40N/m oscillates with an amplitude of 25 cm.  A 
minute later, it is oscillating with an amplitude of 10 cm.  What is the damping 
coefficient?

The amplitude of the oscillations goes as

If the amplitude after a time t is A1, then we get the following equation:

The damping rate is related to the damping coefficient as follows:

Critical Damping

The point of transition between underdamping and overdamping, where b2 = 4mk, is 
known as critical damping.  The general solution for a critically damped oscillator is



An oscillator returns to the equilibrium position the fastest if it is critically damped 
(See figure below).  An overdamped oscillator will drift towards equilibrium slowly, 
held back by excess friction, while an underdamped oscillator will oscillate back and 
forth across the equilibrium point before settling there.  A critically damped oscillator 
minimizes the time it takes to settle to equilibrium.  For this reason, shock absorbers 
are often designed to be critically damped.

Problem:

A shock absorber has a moving piston with a mass of 5kg, and is critically damped. 
When an additional 10kg is attached to the shock absorber, the system is undergoes 
damped oscillations with a frequency of 5 hz.  What is the spring constant and the 
damping coefficient of the shock absorber?

Let m0 = 5kg be the shock absorber's intrinsic mass, and m1 = 15kg be the mass of the 
shock absorber plus the additional weight.  We have two unknown quantities:  the 
shock absorber's spring constant and damping coefficient, so we'll need two equations 
to solve for these quantities.  The first equation comes from the condition that the 
shock absorber is critically damped with no additional mass:

The second equation comes from the frequency when the additional mass is added:

Plug the expression for b2 from the first equation into the second to solve for k, then 
use k to obtain b:


