Lecture2 Notes. 06/ 28
The Simple Pendulum: Force Diagram
A simple pendulum consists of a small mass suspgkodean approximately

massless, non-stretchable string. It is free tdlate from side to side. The forces
acting on the mass are the force of gravity andehsion in the string:

The tension cancels out the componennhgthat lies along the string; this keeps the
object from accelerating in the direction of thengf, and thus keeps the string's
length constant. The net force is simply the remngi component afng, whichis
pointed perpendicular to the string and is equal to

Fl.p = —mgsin(f)

(We have made the net force negative since it pamthe direction of decreasil

Equations of Motion

The mass travels along an arc on a circle; thdatispment along the arc is given by

x = L@and so the acceleration is givendy La, wherea = ¢f0/dt>. Thus, Newton's
Law gives

i = Fl mLo = —mgsin(#)
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oy = ———sin(f)



This is not Hooke's Law, since a sine function appen the right hand side.
However, for small angles, the sine function camX@anded as follows:

1
sin(f) =6 — -7 + ...
]
The angle here must be expressed in radianse Hrlgle is sufficiently small, then
we can just keep the first term in the expansiod, r@placesin(6) with 8 Our

equation of motion then becomes

M.
Ny = ———4

This is clearly the equation of motion for a harmeawscillator, withé playing the

role ofx, a taking the role of, andk=mg/L. Thus, for small displacements, the
pendulum will oscillate with simple harmonic motithis is just another example of
simple harmonic motion being a nearly universaldvadr for systems near
equilibrium).

Using the results from the previous lecture, thedoéum's angular frequency,
frequency and period are:
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Note that the pendulum's frequency does not depertbw heavy an object is
attached to the string: all masses oscillate thighsame frequency. However, the
pendulum is sensitive to the length of the strind the acceleration due to gravity.

Energy of the Pendulum

The pendulum only has gravitational potential epeag gravity is the only force that
does any work. Let us define the potential enagyipeing zero when the pendulum
Is at the bottom of the swing= 0. When the pendulum is elsewhere, its vertical
displacement from th@= 0 pointish = L - L cos(8) (see diagram)

Lcos(8)

| L-Lcos(8)




The potential energy of the pendulum is therefore

7= ,-u._qh = f}f._qL[l — f'”-"‘[H”

For small angles, this turns out to correspondh¢opotential energy of the harmonic
oscillator, just as the force does. We can expladosine function as follows:
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This gives the following expression for

-1 9
U = ;m._qLH‘

The total energy of the pendulum is the potenti@irgy at the maximum
displacement, when the displacement is equal tanmaitude:
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E=K+U= Smu + ;m._qLH‘ = ;r}r._qL_-*l‘
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Conservation of energy therefore gives a kinenmegication for the velocity as a
function of deflection angle:

vt = gL (_-4.3 — Hj]

Note that in the above expressions, the amplifudas units of radians, and
measures the maximum deflection angle. This i&k@nhe case of a mass on a
spring, where the amplitude has units of distance.

Some problems:

1. If you want a pendulum to have a period ofdosé, how long should the
pendulum be?

T—or Eo1e L= gT" _ 98m/s x (1)
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= 0.248m = 24.8cm

2. If you take the same pendulum to the Moon, wher 1.68m/$, what will be its
period there?
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Pendulum clocks:

Since the pendulum's period is not very consistadtdepends only the pendulum
length and the force of gravity, pendulums wer¢ohisally used in clocks. An arm
would swing back and fourth every second, or séw®eonds. There would be a
spring-loaded driving force that would keep the gomg, and a mechanism
coupling it to the machinery of the clock.

These devices were reasonably good at keeping butesensitive to variations in
local gravity. A pendulum clock made for one legatwould not necessarily keep
good time in another.

Problem:

Suppose a pendulum clock is made to run @ith9.810 m/& What would be the
error, in seconds per day, if you moved the clack tocation withg = 9.813 m/%?

Since the period is inversely proportional to thaase root ofj, the new period is
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The clock would therefore run slightly fast (it wddake slightly less than a second
to move the second hand once). How many secomdsveould accumulate per

day? Well, in a 24-hour period, the number of sesacounted by this clock would
be:

N — 24hr % 3600s/hr
T (.0999847 5

= 86413

However, a day only has 86,400 seconds. Therdtueeglock would run fast by 13
seconds per day in the new location.

Damped Oscillator s

Now we will add a particular kind of frictional foe to our oscillating systems. This
kind of force, calledinear damping, is proportional to minus the velocity:

Fy=—bv

The force is directed opposite to the velocityitsall always slow the object down,
as a friction force must.



Linear damping is not necessarily the most commpa of friction - we have seen
kinetic friction before, which does not depend loa $peed (but does depend on the
direction of the velocity, being always directegosgite to it). Friction coming from
air resistance is typically quadratic.

Linear damping does occur when an object movesigiir@a viscous medium. This is
used in shock absorbers. Also, the internal bitin a spring that eventually causes
an oscillating mass on a spring to stop, is wgbrapimated by linear damping.

If we do have linear damping, our equation of moti@comes:

F”rr = —;l':l" — lr-'ﬂ' = i

ma -+ b +kr =10

We can try an exponential solution to this equatidhis represents a mass that
begins away from equilibrium, but approaches théliégium point at later times,
without oscillating at all. This behavior is saerstrongly damped systems. We
guess the following solution:

b)) = Ae™ w(t) = = = —yAe™ a(t) = — =2,
) == )=

Plugging this into our equation, we obtain
my” Ae” T — by Ae”™ ™ + kAT =0

my> —by+ k=10
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Note that this only gives a real numbebif>= 4mk. So, this is indeed a solution
that is only valid for sufficiently high dampindie behavior at lower damping is
somewhat different. Oscillators that do satisfg ttondition are calledverdamped
oscillators, which is a strange name, since they don't oseilaall! Both possible
values ofy give valid solutions: in fact, any combinatidintioe two solutions is a
valid solution. In general,

r(t) = Ae 7+ L Be 7!

The exact values of the amplitud®andB depend on the initial conditions, as shown
in the following problem:



Problem:

An overdamped oscillator starts at rest with aldispments, from the origin. What
Is the displacement of this oscillator as a functbtime?

We know that the oscillator startsxat x, att = 0. Therefore,
#(0)=A+B=u

We have two unknowns, howevArandB, so we need another equation. That is
provided by the fact that the oscillator startseat:

() =10 = HrTf” =) =— [‘:r'_|__-"-1 +~_B)
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':r'.|__-"'1 — ':r'_B =1

Using the first equatiorB = X, - A. Plugging this into the second equation,

':r'.|__-"'1 + - [:rq;. — _"U =1
A ~N g —b + +/b* — 4k
A = — = T
T+ — V- 2 — dmk
Y4+ T b+ v —4mk
B = g — A= = L

T4 — - 2+4/b% — 4k

With the constantd andB determined, we can now find the displacement as a
function of time. It is given by:
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For a typical choice of parameters, the grapk(®flooks something like this:




Underdamped Oscillators

An underdamped oscillator hb$< 4mk. In that case, we need a somewhat different
solution. Unlike overdamped oscillators, underdadpscillators do oscillate, but

the amplitude of the oscillations decreases expaabn We will try a combination

of a cosine and an exponential function as a swluti
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This is getting a bit complicated. Inserting tim® our equation of motion and
grouping terms by sine and cosine, we get:

[rj'r.[‘jr'3 —w?) = by + k) Ae " cos(wt + ) +
+ (2myw — bw) Ae " sin(wt + $) =0

In order for this equation to hold at all timesttbprefactors must be zero. We thus
have a system of equations:

J’J‘J‘.[":r'3 —_ {.J.,-'j) — Jr.":r' + L' =1

2mw — bw =10

Solve the second equation fgrand plug into the first:
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The angular frequency is shifted from the valuether simple, undamped harmonic
oscillator. However, for small damping, the skisfhot large. The quantity under the
square root is positive fol* < 4mk, so this solution is indeed valid over the entire
region where the overdamped solution is not.



For an underdamped system, the solution looks dongelike this. The amplitude
decays exponentially while the system oscillatesiathe equilibrium point.

X

Problem:
A 1kg mass on a spring witt= 40N/m oscillates with an amplitude of 25 cm. A
minute later, it is oscillating with an amplitudel® cm. What is the damping
coefficient?

The amplitude of the oscillations goes as
Aft) = Aje™™

If the amplitude after a timeis A;, then we get the following equation:
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The damping rate is related to the damping coeffiicas follows:

!
v = )—’ bh=2m~y=2x lkg x 0.0153s7' = 0.0306kg s~}
.._n.ll.i'-l".

Critical Damping

The point of transition between underdamping aret@emping, wherb® = 4mk; is
known ascritical damping. The general solution for a critically dampedilbstor is

{
o(t) = (A+ Bx)e " 4= —
2m



An oscillator returns to the equilibrium positidretfastest if it is critically damped
(See figure below). An overdamped oscillator dfift towards equilibrium slowly,
held back by excess friction, while an underdampeillator will oscillate back and
forth across the equilibrium point before settlthgre. A critically damped oscillator
minimizes the time it takes to settle to equililoniu For this reason, shock absorbers
are often designed to be critically damped.

— Underdamped
= Critically damped
t — Overdamped

Problem:

A shock absorber has a moving piston with a ma&&g@fand is critically damped.
When an additional 10kg is attached to the shoskidier, the system is undergoes
damped oscillations with a frequency of 5 hz. Whahe spring constant and the
damping coefficient of the shock absorber?

Let my = 5kg be the shock absorber's intrinsic mass,rayd 15kg be the mass of the
shock absorber plus the additional weight. We haweunknown quantities: the
shock absorber's spring constant and damping caeefti so we'll need two equations
to solve for these quantities. The first equattomes from the condition that the
shock absorber is critically damped with no addéilomass:

-lr.'j —_ -.I:.f.i'-i'-{u;l'
The second equation comes from the frequency wieadditional mass is added:
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Plug the expression fd&F from the first equation into the second to solwekf then
usek to obtainb:
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b =\ dmyk = V'f—l % kg % 2.2 x 10%kg - 872 = 670k - g1



