SOLUTIONS
Worksheet 1: Math review and 1D motion

1 Sig Figs and Scientific Notation

1.1 How many significant figures does each of the following numbers have?

a. 6.21 3
b. 62.1 3
c. 6210 3
d. 6210.0 5

e. 0.062 2
f. 0.620 3
g. 0.62 2
h. 62 2

i. 1.062 4
j. 6.21 \times 10^3 3
k. 6.21 \times 10^{-3} 3
l. 62.1 \times 10^3 3

1.2 Compute the following numbers with the correct number of sig figs:

a. 33.3 \times 25.4 = \underline{846}
d. 2.345 \times 3.321 = \underline{7.788}

b. 33.3 - 25.4 = \underline{7.9}
e. (4.32 \times 1.23) - 5.1 = \underline{0.2}

1.3 Express the following numbers and computed results in scientific notation

a. 9.827 \underline{9.827 \times 10^3}
d. 32,041 \times 47 = \underline{1.5 \times 10^6}

b. 0.0000000550 \underline{5.50 \times 10^{-8}}
e. 0.059 \div 2,304 = \underline{2.6 \times 10^{-5}}

c. 3,200,000 \underline{3.2 \times 10^6}
f. 320 \times 0.050 = \underline{1.6 \times 10^1}

2 Algebra Review:

2.1 Simplify or solve each:

a. \frac{10^2}{(10^4)^2} = \underline{10^{-4}}
b. \frac{(10^2)^5}{(10^4)^6} = \underline{10^{-2}}
c. \frac{(10^2)^{10}}{10^{10}} = \underline{1}
d. \frac{10^9}{(10^4)^2} = \underline{10}
e. Solve for a: \[a = \frac{2}{t^2} (y - v_0 t) \]
f. Solve for g: \[g = \frac{4\pi^2 L}{T^2} \]
g. Solve for \[\mu = \frac{v^2 r}{\mu g} \]

2.2 Solving systems of equations

A) \[h = h_0 + v_0 t - \frac{1}{2} gt^2 \]
B) \[v^2 = v_0^2 - 2gh \]
C) \[v = v_0 - gt \]

1) You are given \(v_0 \), \(h_0 \), and \(g \) and the equations above. Do you have enough equations to solve for \(v \)? Can you do it with two equations? With one? Solve for \(v \):

Yes you can solve for \(v \). You have to use all three.

\[
v^2 = v_0^2 - 2g \left[h_0 + v_0 \left(\frac{v_0 - v}{g} \right) - \frac{1}{2} g \left(\frac{v_0 - v}{g} \right)^2 \right]
\]

2) You are given \(v \), \(t \), and \(g \). Do you have enough equations to solve for \(h \)? Can you do it with two equations? With one? Solve for \(h \):

You can solve for \(h \) with Equations B and C.

\[
v_0 = v - gt \quad \Rightarrow \quad v^2 = (v - gt)^2 - 2gh
\]

Arrange (C) plug into (B)

\[
 h = \frac{(v - gt)^2 - v^2}{2g}
\]

3 SI Units and Dimensional analysis:

3.1 Convert the following to SI units. Work across the line and show all steps in the conversion. Use scientific notation and apply the proper use of significant figures.

a. \[9.12 \mu s \times \frac{1 s}{10^6 \mu s} = 9.12 \times 10^{-6} s \]

b. \[3.42 \text{ km} \times \frac{10^3 \text{ m}}{1 \text{ km}} = 3.42 \times 10^3 \text{ m} \]

c. \[44 \text{ cm/s} \times \frac{10^3 \text{ m}}{1 \text{ cm}} \times \frac{1 \text{ m}}{10^2 \text{ cm}} = 440 \text{ m/s} \]

d. \[80 \text{ km/hr} \times \frac{10^3 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ hr}}{3600 \text{ s}} = 22 \text{ m/s} \]

e. \[8 \text{ in} \times \frac{2.54 \text{ cm}}{1 \text{ in}} \times \frac{1 \text{ m}}{10^2 \text{ cm}} = 0.2 \text{ m} \]

f. \[13 \text{ in}^2 \times \left(\frac{2.54 \text{ cm}}{1 \text{ in}} \right)^2 \times \left(\frac{1 \text{ m}}{10^2 \text{ cm}} \right)^2 = 8.3 \times 10^{-3} \text{ m}^2 \]

g. \[250 \text{ cm}^3 \times \left(\frac{1}{10^2 \text{ cm}} \right)^3 = 2.5 \times 10^{-4} \text{ m} \]
3.2 Determine which of the following statements are reasonable:

a. Joe is 180 cm tall. \[1.80 \text{ m} \approx 6 \text{ ft tall, which is reasonable}\]

b. I rode my bike to campus at a speed of 50 m/s \[\approx 120 \text{ mph, not reasonable}\]

c. A skier reaches the bottom of the hill going 25 m/s \[\approx 60 \text{ mph, reasonable}\]

d. I can throw a ball a distance of 2 km \[\text{not reasonable}\]

e. I can throw a ball at a speed of 50 km/hr \[\approx 30 \text{ mph, reasonable}\]

3.3 Use the following dimensions for variables to determine which equations are valid:

\[[x] = [L], \quad [m] = [M], \quad [v] = [L]/[T], \quad [t] = [T], \quad [a] = [L]/[T]^2, \quad [A] = [L]^2, \quad [E] = [M][L]^2/[T]^2, \quad [F] = [M][L]/[T]^2, \quad [p] = [M][L]/[T], \quad [P] = [M][L]^3/[T]^2 \]

\[x = vt \quad [L] = \frac{[L]}{[T]} \cdot [T] = [L], \quad \text{which is valid} \]

\[x = \frac{1}{2}at^2 \quad [L] = \frac{[L]}{[T]^2} \cdot [T] = [L], \quad \text{Valid} \]

\[v^2 = x + at \quad \left(\frac{[L]}{[T]^2}\right)^2 \not= [L] + \frac{[L]}{[T]^2}[L], \quad \text{not valid} \]

\[v = at \quad \left(\frac{[L]}{[T]^2}\right) = \frac{[L]}{[T]^2} [T], \quad \text{Valid} \]

\[F = ma \quad \frac{[M][L]^2}{[T]^2} = \frac{[M]}{[T]^2} [L], \quad \text{Valid} \]

\[E = Fx \quad \frac{[M][L]^2}{[T]^2} \not= \frac{[M][L]^2}{[T]^2} [L], \quad \text{not valid} \]

\[E = \frac{1}{2}p^2 \not= \frac{[M][L]^2}{[T]^2} \quad \not= \frac{[M][L]^2}{[T]^2} [L], \quad \text{not valid} \]
4. **Reading graphs**

![Graph of position vs. time](image)

1. During what time interval is there acceleration? **0 - 5 min**

2. During what time interval is there zero velocity? **5 - 6 min**

3. At what instant is velocity zero but acceleration nonzero? **t = 2.25 min**

4. During what time interval is there the highest speed? **4 - 5 min**

5. During what time interval is there slow down? **0 min - 2.25 min**

6. During what time interval is there speeding up? **2.25 min - 5 min**

7. Do your best to sketch graphs for velocity and acceleration

![Graph of velocity vs. time](image) ![Graph of acceleration vs. time](image)
3. Vectors

Vectors shown:
- Components of the x and y
- Numerical values of determine
- Draw and

\[\vec{A} + \vec{B} = \vec{C} \]

\[\vec{A} - \vec{B} = \vec{C} \]

\[\vec{A} + 2\vec{C} - \vec{B} = \vec{D} \]

\[\vec{D} - \vec{B} = 2\vec{A} \]
Determine A_x and A_y in each coordinate system.

Define vector A with magnitude=5, 30$^\circ$ above the horizontal.

- Find the magnitude and direction of the vector.

- Label the angle θ to describe the direction of the vector.

- Draw the vector on the axes provided.