6-43. (a) For $x>0, \hbar^{2} k_{2}^{2} / 2 m+V_{0}=E=\hbar^{2} k_{1}^{2} / 2 m=2 V_{0}$
So, $k_{2}=\left(2 m V_{0}\right)^{1 / 2} / \hbar$. Because $k_{1}=\left(4 m V_{0}\right)^{1 / 2} / \hbar$, then $k_{2}=k_{1} / \sqrt{2}$
(b) $R=\left(k_{1}-k_{2}\right)^{2} /\left(k_{1}+k_{2}\right)^{2} \quad$ (Equation 6-68)
$=(1-1 / \sqrt{2})^{2} /(1+1 / \sqrt{2})^{2}=0.0294$, or 2.94% of the incident particles are
reflected.
(c) $T=1-R=1-0.0294=0.971$
(d) 97.1% of the particles, or $0.971 \times 10^{6}=9.71 \times 10^{5}$, continue past the step in the $+x$
direction. Classically, 100\% would continue on.
6-44. (a) For $x>0, \hbar^{2} k_{2}^{2} / 2 m-V_{0}=E=\hbar^{2} k_{1}^{2} / 2 m=2 V_{0}$
So, $k_{2}=\left(6 m V_{0}\right)^{1 / 2} / \hbar$. Because $k_{1}=\left(4 m V_{0}\right)^{1 / 2} / \hbar$, then $k_{2}=\sqrt{3 / 2} k_{1}$
(b) $R=\left(k_{1}-k_{2}\right)^{2} /\left(k_{1}+k_{2}\right)^{2}$

$$
R=\left(k_{1}-k_{2}\right)^{2} /\left(k_{1}+k_{2}\right)^{2}=(1-\sqrt{3 / 2})^{2} /(1+\sqrt{3 / 2})^{2}=0.0102
$$

Or 1.02% are reflected at $x=0$.
(c) $T=1-R=1-0.0102=0.99$
(d) 99% of the particles, or $0.99 \times 10^{6}=9.9 \times 10^{5}$, continue in the $+x$ direction. Classically, 100% would continue on.

6-45. (a)

and $\alpha a=0.6 \mathrm{~nm} \times 11.46 \mathrm{~nm}^{-1}=6.87$

Since αa is not 1 , use Equation 6-75:
The transmitted fraction

$$
T=\left[1+\frac{\sinh ^{2} \alpha a}{4\left(E / V_{0}\right)\left(1-E / V_{0}\right)}\right]^{-1}=\left[1+\left(\frac{81}{80}\right) \sinh ^{2}(6.87)\right]^{-1}
$$

Recall that $\sinh x=\left(e^{x}-e^{-x}\right) / 2$,

$$
T=\left[1+\frac{81}{80}\left(\frac{e^{6.87}-e^{-6.87}}{2}\right)^{2}\right]^{-1}=4.3 \times 10^{-6} \text { is the transmitted }
$$

fraction.
(b) Noting that the size of T is controlled by αa through the $\sinh ^{2} \alpha a$ and increasing T
implies increasing E. Trying a few values, selecting $E=4.5 \mathrm{eV}$ yields $T=8.7 \times 10^{-6}$
or approximately twice the value in part (a).

6-48. Using Equation 6-76,

$$
\begin{aligned}
T & \approx 16 \frac{E}{V_{0}}\left(1-\frac{E}{V_{0}}\right) e^{-2 \alpha a} \text { where } E=2.0 \mathrm{eV}, V_{0}=6.5 \mathrm{eV}, \text { and } a=0.5 \mathrm{~nm} . \\
T & \approx 16\left(\frac{2.0}{6.5}\right)\left(1-\frac{2.0}{6.5}\right) e^{-2(10.87)(0.5)} \approx 6.5 \times 10^{-5} \quad \quad \text { (Equation } \quad 6-75 \quad \text { yields }
\end{aligned}
$$

$$
\left.T=6.6 \times 10^{-5} .\right)
$$

6-49. $\quad R=\frac{\left(k_{1}-k_{2}\right)^{2}}{\left(k_{1}+k_{2}\right)^{2}}$ and $T=1-R \quad$ (Equations 6-68 and 6-70)
(a) For protons:

$$
\begin{array}{r}
k_{1}=\sqrt{2 m c^{2} E} / \hbar c=\sqrt{2(938 \mathrm{MeV})(40 \mathrm{MeV})} / 197.3 \mathrm{MeV} \quad \mathrm{fm}=1.388 \\
k_{2}=\sqrt{2 m c^{2}\left(E-V_{0}\right)} / \hbar c=\sqrt{2(938 \mathrm{MeV})(10 \mathrm{MeV})} / 197.3 \mathrm{MeV} \quad \mathrm{fm}=0.694
\end{array}
$$

$$
R=\left(\frac{1.388-0.694}{1.388+0.694}\right)^{2}=\left(\frac{0.694}{2.082}\right)^{2}=0.111 \quad \text { And } T=1-R=0.889
$$

(b) For electrons:

$$
\begin{aligned}
& k_{1}=1.388\left(\frac{0.511}{938}\right)^{1 / 2}=0.0324 \quad k_{2}=0.694\left(\frac{0.511}{938}\right)^{1 / 2}=0.0162 \\
& R=\left(\frac{0.0324-0.0162}{0.0324+0.0162}\right)^{2}=0.111 \quad \text { And } T=1-R=0.889
\end{aligned}
$$

No, the mass of the particle is not a factor. (We might have noticed that \sqrt{m} could be canceled from each term.)

6-54. (a) The requirement is that $\psi^{2}(x)=\psi^{2}(-x)=\psi(-x) \psi(-x)$. This can only be true if:

$$
\psi(-x)=\psi(x) \text { or } \psi(-x)=-\psi(x) .
$$

(b) Writing the Schrödinger equation in the form $\frac{d^{2} \psi}{d x^{2}}=-\frac{2 m E}{\hbar^{2}} \psi$, the general solutions of this $2^{\text {nd }}$ order differential equation are:
$\psi(x)=A \sin k x$ and $\psi(\mathrm{x})=A \cos k x$
where $k=\sqrt{2 m E} / \hbar$. Because the boundaries of the box are at $x= \pm L / 2$, both
solutions are allowed (unlike the treatment in the text where one boundary
was at
$x=0$). Still, the solutions are all zero at $x= \pm L / 2$ provided that an integral number
of half wavelengths fit between $x=-L / 2$ and $x=+L / 2$. This will occur for:
$\psi_{n}(x)=(2 / L)^{1 / 2} \cos n \pi x / L$ when $n=1,3,5, \cdots$. And for $\psi_{n}(x)=(2 / L)^{1 / 2} \sin n \pi x / L$ when $n=2,4,6, \cdots$.

The solutions are alternately even and odd.
(c) The allowed energies are: $E=\hbar^{2} k^{2} / 2 m=\hbar^{2}\left(n \pi L^{2}\right) / 2 m=n^{2} h^{2} / 8 m L^{2}$.

6-55. $\quad \psi_{0}=A e^{-x^{2} / 2 L^{2}}$
(a) $\frac{d \psi_{0}}{d x}=\left(-x / L^{2}\right) A e^{-x^{2} / 2 L^{2}}$ and $\psi_{1}=L \frac{d \psi_{0}}{d x}=L\left(-x / L^{2}\right) A e^{-x^{2} / 2 L^{2}}=(-x / L) \psi_{0}$

So, $\frac{d \psi_{1}}{d x}=-(1 / L) \psi_{0}-(x / L) d \psi_{0} / d x$
And $\frac{d^{2} \psi_{1}}{d x^{2}}=-(1 / L) d \psi_{0} / d x-(1 / L) d \psi_{0} / d x-(x / L) d^{2} \psi_{0} / d x^{2}$

$$
=\left(2 x / L^{3}\right) \psi_{0}+\left(x / L^{3}\right) \psi_{0}+\left(x^{3} / L^{5}\right) \psi_{0}
$$

Recalling from Problem 6-3 that $V(x)=\hbar^{2} x^{2} / 2 m L^{4}$, the Schrödinger equation
becomes $\left(-\hbar^{2} / 2 m\right)\left(3 m / L^{3}+x^{3} / L^{5}\right) \psi_{0}+\left(\hbar^{2} x^{3} / 2 m L^{5}\right) \psi_{0}=E(-x / L) \psi_{0}$ or, simplifying: $\left(-3 \hbar^{2} x / 2 m L^{3}\right) \psi_{0}=E(-x / L) \psi_{0}$. Thus, choosing E appropriately will make ψ_{1} a solution.
(b) We see from (a) that $E=3 \hbar^{2} / 2 m L^{2}$, or three times the ground state energy.
(c) ψ_{1} plotted looks as below. The single node indicates that ψ_{1} is the first excited state.
(The energy value in [b] would also tell us that.)

6-56. $\left\langle x^{2}\right\rangle=\int_{0}^{L} \frac{2}{L} x^{2} \sin ^{2} \frac{n \pi x}{L} d x \quad$ Letting $u=n \pi x / L, d u=(n \pi / L) d x$

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\frac{2}{L}\left(\frac{L}{n \pi}\right)^{2}\left(\frac{L}{n \pi}\right) \int_{0}^{n \pi} u^{2} \sin ^{2} u d u \\
& =\left.\frac{2}{L}\left(\frac{L}{n \pi}\right)^{3}\left[\frac{u^{3}}{6}-\left(\frac{u^{2}}{4}-\frac{1}{8}\right) \sin 2 u-\frac{u \cos 2 u}{4}\right]\right|_{0} ^{n \pi} \\
& =\frac{2}{L}\left(\frac{L}{n \pi}\right)^{3}\left[\frac{(n \pi)^{3}}{6}-0-\frac{n \pi}{4}-0\right]=\frac{L^{2}}{3}-\frac{L^{2}}{2 n^{2} \pi^{2}}
\end{aligned}
$$

6-58. (a) For $\Psi(x, t)=A \sin (k x-\omega t)$

$$
\frac{d^{2} \Psi}{d x^{2}}=-k^{2} \Psi \text { and } \frac{\partial \Psi}{\partial t}=-\omega A \cos (k x-\omega t) \text { so the Schrödinger equation }
$$ becomes:

$$
-\frac{\hbar^{2} k^{2}}{2 m} A \sin (k x-\omega t)+V(x) A \sin (k x-\omega t)=-i \hbar \omega \cos (k x-\omega t)
$$

Because the \sin and \cos are not proportional, this Ψ cannot be a solution. Similarly,
for $\Psi(x, t)=A \cos (k x-\omega t)$, there are no solutions.
(b) For $\Psi(x, t)=A[\cos (k x-\omega t)+i \sin (k x-\omega t)]=A e^{i(k x-\omega t)}$, we have that

$$
\begin{aligned}
& \frac{d^{2} \Psi}{d x^{2}}=-k^{2} \Psi \text { and } \frac{\partial \Psi}{\partial t}=-i \omega \Psi . \text { And the Schrödinger equation becomes: } \\
& -\frac{\hbar^{2} k^{2}}{2 m} \Psi+V(x) \Psi=-\hbar \omega \Psi \text { for } \hbar \omega=\hbar^{2} k^{2} / 2 m+V
\end{aligned}
$$

