OPTIMAL-VELOCITY MODELS OF
MOTORWAY TRAFFIC

Peter Berg
School of Mathematics

December 2001

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF BRISTOL
IN ACCORDANCE WITH THE REQUIREMENTS OF THE DEGREE
OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF SCIENCE



ii



Abstract

This thesis deals with the mathematical description of motorway traffic by optimal-
velocity (OV) models. To date, any OV type is classified as one of two classes, which
are considered independent: discrete car-following and continuum models.

In this work, it is shown that a transformation exists that relates these two classes
so that under certain circumstances an analogous continuum version of a given car-
following model can be derived. Correspondingly, certain continuum models can be
transformed into their car-following counterpart.

This formalism is then applied to two cases of simulations. Firstly, the types of
waves which connect traffic flow of two different fluxes are investigated in an OV
car-following model. They can be interpreted in the analogous continuum picture.
Secondly, an on-ramp simulation of an OV car-following model reveals, qualitatively,
the same results as previous simulations of OV continuum models. This underlines
the idea of their mathematical analogy and in the case of solitary waves, this can be
shown explicitly.

Even though the correspondence between these two types of models is strictly shown
for only one specific case, the Bando model, it can be generally assumed that they
predict similar results for similar traffic situations. Hence, this work establishes a
link between the microscopic (car-following models) and the macroscopic (continuum

models) description of traffic.

iii






Acknowledgements

My special thanks to all of those who made my PhD an enjoyable time.

Most of all to Rhona, whose smile makes up for any lack of sunshine in this rainy
place. Thanks to my family for any support they have given me, Max and Gaélle
for their catering and caring services, Niels “Aaldaar” Wergin for keeping up the
good mood, Robert and Luisa for just being themselves, Christian, Sabine, Ilja and
Elke for getting here, Heiko, Terry and Andy for the matches, Duncan for his place,
Julian for his “Spanish” lessons, Javier for standing by me at the Adams family and
the Mendips for being perfect hills to cycle through.

This piece of work would have neither been started, nor finished without the financial
support of the Alfried Krupp von Bohlen und Halbach-Stiftung. Here, most credits
go to Herrn Seidenfus, Herrn Marheineke and Herrn Kempf for their acknowledge-
ment of my special circumstances.

The work itself was made possible by the help of my supervisor, Professor Andy
Woods, whose ideas and support have been essential, and whose personal engage-
ment opened up my future opportunities in R&D. Moreover, Eddie Wilson played
an important part in being my local reference person, and Boris Kerner delivered
vital arguments for the on-ramp simulation.

The environment at work was unique due to the mixture of various cultures: Hakim
and his views on life, Robert and his computational knowledge, Dave “Braveheart”
Pritchard and his lessons in HTML and British history. An unforgettable bunch!
Thanks to all of you.



vi



Financial Support

Diese Arbeit wurde im Stipendienprogramm der
Alfried Krupp von Bohlen und Halbach-Stiftung
zur Forderung von Doktoranden auf dem Gebiet
der Verkehrswissenschaften gefordert.

This dissertation has been supported financially by Alfried Krupp
von Bohlen und Halbach-Stiftung. The author is a grateful
recipient of this foundation’s scholarship for PhD students in

traffic research.

vii



viii



Author’s Declaration

I declare that the work in this thesis was carried out in ac-
cordance with the Regulations of the University of Bristol.
The work is original except where indicated by special ref-
erence in the text and no part of the dissertation has been
submitted for any other degree. Any views expressed in the
dissertation are those of the author and in no way represent
those of the University of Bristol. The thesis has not been
presented to any other University for examination either in

the United Kingdom or overseas.

Peter Berg

Date: 05 December 2001

ix






Contents

Abstract
Acknowledgements
Financial Support
Author’s Declaration

1 Introduction
1.1 Aspects and Relevance of Motorway Traffic . . . ... ... ... ..
1.2 Mathematical Modelling of Traffic Flow . . . .. ... .. ... ...
1.3 Targets of this Work . . . . . .. ... .. ... .. L.

2 Principles of Traffic Flow Modelling
2.1 Features of Road Traffic . . . .. .. .. ... .. ...........
2.2 Mathematical Models . . . . .. .. .. ... .. 0000
2.2.1 Continuum Models . . . . . . .. ... ... ...,
2.2.2 Car-following Models . . . . . .. ... ... ... .......
2.23 The Bando Model . . .. ... ... ... ... ...

2.2.4 Multi-lane, On- and Off-ramp Simulations . . . . . . . .. ..

3 Continuum Approach to Car-following Models
3.1 The Need to relate Car-following and Continuum Models . . . . . .
3.2 The Transformation; Continuum Version of the Bando Model . . . .
3.3 Stability Analysis . . . . . . . . ...

3.4 Comparison of Travelling Wave Solutions . . . ... ... ... ...

xi

iii

vii

ix

S AN -

10
11
16
18
26
31
32



Contents

3.5 Comparison with the Kerner-Konhauser Model . . . . . . ..
3.6 Travelling Waves of the Unstable Regime . . . ... ... ..
3.7 Asymptotic Solutions . . . . . ... ..o L.
3.8 The Inverse Transformation . . . . . .. ... ... ... ...

3.9 Conclusion . . . . . . . . . e

Analogous Models
4.1 Continuum Counterparts of Various Car-following Models

4.2 Car-following Counterparts of Various Continuum Models

4.3 Conclusion . . . . . . . . e

Wave Types in the Bando Model

5.1 The Linear Stable Case . . . ... ... .. ... .......
5.2 Travelling Waves of the Stable Regime . . . . . . .. ... ..

5.2.1 Transition Involving a Decrease in Headway:

Decelerating Traffic . ... ... ... .........

5.2.2 Transition Involving an Increase in Headway:

Accelerating Traffic . . .. ... ... .. .. .....

5.2.3 Fastest Wave and Bando Wave . . . ... ... .. ..

5.3 Stable and Unstable Flow Patterns . . . . . .. .. ... ...
5.4 The Metastable Regime . . . . .. ... ... ... ......
5.5 Comparison with other OV Functions . . ... ... ... ..
5.6 Periodic Boundary Conditions . . . . . . .. ... ... ....
5.7 Multi-species Flow . . . . ... .. ... ... .. .......
5.8 Impact on Bottlenecks and ACCS. . . ... ... .......
5.9 Travelling Waves in the Continuum Model . . . . . . . . . ..

5.10 Conclusion . . . . . . . . . e e e

Simulation of an On-ramp in a Car-following Model

6.1 The Model . . . .. . . . . . . . . . e

6.2 Traffic States near On-ramps . . . ... .. ... .......

6.2.1 Dispersive Homogenous Congested Traffic

Downstream (DHCTd). . . ... ... ... ......

xii



Contents

6.2.2 Homogenous Congested Traffic Upstream (HCTu) . ... .. 121
6.2.3 Dipole Congested Traffic Upstream (DPCTu) . . . ... ... 122

6.2.4 Dispersive Homogenous Congested Traffic
Upstream (DHCTu) . .. ... ... ... ... ......... 123

6.2.5 Dispersive Peak Located Congested Traffic
Upstream (DPLCu) . ... ... ................ 124
6.3 Triggered Stop-and-go Waves and Solitons . . . . . .. .. ... ... 125
6.4 Downstream Oscillations . . . . . . .. ... ... ... 130
6.5 Conclusion . .. .. .. ... s 133
7 Summary and Outlook 134
A Cellular Automata 137
B Inappropriate Inverse Transformation 140
C Differential Delay Equations 142
D Numerical Techniques 145
Publications 147
Bibliography 148

xiii



List of Tables

2.1

4.1

4.2

An overview of car-following models, their stability criterion and equilibrium

flow-density relation. . . . . . . . . ... Lo Lo 28

An overview of some (original) car-following models (o) and their (trans-

formed) macroscopic counterparts (t). . . . . . ... ... 73

An overview of some continuum (o) models and their microscopic counter-

Xiv



List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1

3.2
3.3

3.4

The fundamental diagram in terms of real traffic data. . . . . . . . .. ..

Data extracted from aerial photographs along a highway shows a shock wave

travelling upstream [81]. . . . . . . ... ..o

Jam waves of high (white) and low (black) density travelling upstream be-
tween junctions J10 and J15 on the M25 London ring [2]. . . . . . . . ..

A qualitative diagram of the occuring traffic states and their maximum
(out)flows: free flow (F), jam (J) and synchronized flow (hatched region),
as interpreted by Kerner [44]. . . . . . ... ... ... oL

The formation of a shock only appears if 3% (S—Z) < 0 is at some point along
the road. tg: initial distribution, ¢;: intermediate solution, ¢;: shock wave

formation. . . . . . . . . L e e e e e e e

A qualitative cluster solution of the Kerner-Konh&user model (2.2.23) in the

metastable regime. . . . . ... L0 0000 oL

The fundamental diagram of the Bando model [4]. A discrete jump in flow

appears when the model becomes unstable between critical densities p.; and

An initial disturbance in the Bando model causes the formation of stop-and-

go jams on a ring road [39]: the darker the region, the higher the density. .

The monotonic increasing optimal-velocity function Vp(b,) of the Bando

model with top speed Vg(b, —+00) & 1.964. . . . . . ... ... ... ..
The function Q(k) for two different values of the sensitivity a. . . . . . . .

Initial change of headway in the Bando model, ¢ = 0. The initial speed of
the vehicles is given by v,(0) = Vg(b,(0)). Our special choice of Heaviside

initial data is further discussed in chapter 5. . . . . . . . . .. ... ...

The wave profile of the Bando model approaching the travelling wave solu-

tion of the continuum model in the moving frame Eq. (3.4.1). . . . . . . .

XV

25

31

38
45



List of Figures

3.5

3.6

3.7
3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15
3.16

3.17
3.18
3.19
3.20

5.1

The change of headway at ¢ = 1000 for an initial jump from b_ = 3.0 to
by =1.8. o e e e

Formation of a Bando wave (upstream structure) and a second travelling

wave (downstream structure) for initial conditions b_., = 3.0 and by, = 1.7.

Determination of the time offset ¢;,;:i4; Of the Bando wave. . . . . . . . .

Comparison of the Bando wave and two individual travelling wave solutions

of the continuum model. . . . . . . . . . . ..o oo

The monotonic decreasing optimal-velocity function of the Kerner-Konh&user

model. . . . e e e e e e e

Comparison of travelling waves in the Bando model Eq. (3.5.1), the anal-
ogous continuum model Eq. (3.4.12), and the Kerner-Konhiuser (K.-K.)
model Eq. (3.5.17) in the stable region for the same optimal-velocity (OV)

function. . . . . . . .. e e e e e e e e

Comparison of travelling waves in the Bando model Eq. (3.5.1), and the

analogous continuum model Eq. (3.4.12).. . . . . . . .. .. ...,

Travelling waves with upstream b_ = 3 and downstream headway b, = berit
become unstable for a < 2 and form clusters with headways given by the

CULVE bol. « v v o e e e e e e e e e e e e e e e e e e e e e e

The travelling wave solution of a modest jump in headway from b_ = 3 to
by = 2.7 in the unstable regime (¢ = 1.0) cannot be reproduced by the

car-following model. Clusters form. . . . . . . .. ... ... ......

Initial condition: region of slightly higher congested traffic. Again the initial
speed of the vehicles is given by v,(0) = Vg(b,(0)). . . . . . .. ... ..

The evolution of the pulse Fig. 3.14; ¢t = 250, 500, ...,2500. . . . . . . . ..

Fundamental diagram of the Bando model with significant densities: back-
ground density p_ = 1/b_ = 1/3, maximum of the flow pg = 0.36, inflection

point p;, = 0.5, onset of the Bando wave p..;; = 0.58, and the Bando wave

Comparison of the numerical data and the asymptotic solution Eq. (3.7.23).

The asymptotic height of the pulse Ap decays like ¢t~ 1/2.

The pulse spreads out along the road like t1/2. . . . ... ... .....

Initial change of headway in the Bando model, ¢ = 0. The initial speed of
the vehicles is given by v,(0) = Vg(b,(0)). . . . . . . . .. ... L.

xvi

49

50
51

o1

53

54

55

57

58

59
60

61
62
63
65
65



List of Figures

5.2
5.3

5.4
5.5
5.6
5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Transitions of decelerating traffic (e =2.0). . . ... ... ... ..... 92

Fundamental diagram: the transitions oscillatory — Bando wave (osc —

bw) and the Bando wave itself (bw) approach the fastest wave (pf.,) with

increasing @. . . . . . . ... 93
Transitions of decelerating traffic (e =24). . ... ... ... ...... 94
Transitions of accelerating traffic (e =2.0). . ... ... ... ...... 96
Transitions for accelerating traffic (a=2.4). . . . . ... ... ... ... 97

For a given upstream headway b_, the fastest wave theoretically possible is

either not accessible or just for two cases, Bando waves. . . . . . . . . .. 98

Onset of instability: wave profile after ¢ = 500 and a = 1.0 for an initial
(t=0)jumpatz=0fromb_=20toby =0. . .. ... ... ..... 99

Onset of instability: wave profile after ¢ = 500 and a = 1.0 for a freely
accelerating vehicleat zt =0and t =0 fromb_ =2.0. . ... ... ... 100

Phase diagram of the Bando wave for different sensitivities a. Only for a < 2

can they be fitted together to yield the typical jam fronts of unstable low. 101

The cluster formation in the metastable regime. It consists of two Bando
waves (a,b) and another shock wave (c), which matches the downstream
headway. . . . . . . . .. 102

The optimal-velocity function Vi (b) of the Kerner-Konhiuser model. The
flow is unstable for headways 18m < b < 36m. The parameter b,,;, is the

average space that cars occupy in a standstill. . . . . . . . .. ... ... 103

Fundamental diagram: the flow vanishes for standstill jams (pmqz). The

curve contains a point of inflexion like the Bando model. . . . . . . . . . 104

The evolution of an initial jump in headway in the unstable regime. The

typical jam cluster forms at the tail. . . . . . . . . . .. ... ... .. 105

Cars can adjust from an upstream to a downstream headway via a Bando
wave, even though parts of the headways involved in this transition are
unstable. . .. oL L L L L L 105

Initial (¢ = 0) Bando wave for a = 2.0, followed by a convoy of cars with

higher sensitivity a =2.4. . . . . . . . ..o 107
Evolution of a transition from b_ = 3.0 to b4 = 1.6 with a varying sensitivity
an, = 2.4+ 0.2sin(27n/100): shape remains oscillatory. . . . . . . . . .. 108
Evolution of a transition from b_ = 3.0 to b4 = 1.6 with a varying sensitivity
an = 2.4+ 0.4sin(27n/100): Bando wave forms. . . . . . . . ... .. .. 109

xvii



List of Figures

5.19

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10

6.11
6.12

Al
A2

Scaled fundamental diagram with upstream (p_) and downstream (p , p%)

densities. . . . . . . .. L. 113
A model for the on-ramp. . . . . ... ... 117
The traffic states of the on-ramp. . . . . . . . ... .. ... 119
Dispersive homogenous congested traffic downstream (DHCTd). . . . . . . 121
Homogenous congested traffic upstream (HCTu). . . . . . ... ... .. 122
Dipole congested traffic upstream (DPCTu). . . . . . . . . . . . ... .. 123
Dispersive homogenous congested traffic upstream (DHCTu). . . . . . . . 124
Dispersive peak located congested traffic upstream (DPLCu). . . . . . . . 125

The triggered stop-and-go state (TSGu) resembles the cnoidal waves solu-
tion of the KdV equation. . . . . . . . . . .. ... ... ... ... 126

The solitary wave solution of the car-following simulation (TSGu) is only
partly matched by the analytical solution (6.3.22) due to higher order and
dissipative effects. . . . . . . . . ... Lo 129

The coefficients of the expansion Eq. (6.3.9) in the density range of the

soliton solution. The solitons form in the regime of negligible dissipation. . 130
Oscillatory congested traffic upstream (OSCu). . . . . . . .. ... ... 131

Oscillatory congested traffic downstream (OSCd): the envelope is stationary,

and the plateau is determined by Eq. (6.1.6). . . . . . ... .. ... .. 132

Cell hopping in a cellular automata models. ’0’: free cell; '1’: occupied cell. 137

Trajectories of vehicles in a cellular automaton model of road traffic [67]:
formation of an upstream running shock wave and the secession of a second

shock wave from the originalone. . . . . . . . ... ... 138

xviii



Chapter 1

Introduction

Road congestion may not be the most efficient solution to transport prob-

lems, but as an equitable solution it is hard to beat! [74]

This dissertation comprises the scientific modelling of road traffic, with special re-
gard to motorways, and its aim is to deliver further insight into the features of this
road type. A powerful tool in revealing such deeper understanding is the application
of simple flow models based on a mathematical description of the system. The study
of complex computational simulations of these models, combined with an analytical
analysis of some of their characteristics, should then ideally provide a better picture
of how traffic works.

To date, the phenomena and processes which are involved in traffic flow are inves-
tigated by approaches which can be qualitatively divided into three classes: on a
microscopic level we find discrete car-following and stochastic models, whereas the
macroscopic scale is represented by the continuum models.

The features predicted by either of these classes show numerous similarities and it
is a major purpose of this thesis to pull two of them together, the car-following and
the continuum approach. This is in particular achieved by focusing on a special type
that is found in both classes called the optimal-velocity model. This closes a gap
between discrete modelling of the flow, which enables quick numerical simulations
including reaction time and other individual driver characteristics, and continuum
modelling, which provides easy means of analysing some phenomena through the
extraction of asymptotic solutions and other analytical techniques.

In principle, one could also find an analogous way to link the stochastic to the de-
terministic models of this work. Therefore, the results of this dissertation should be

regarded as a first step on which further work can be based.

The remainder of this chapter briefly assesses motorway traffic in modern transport

infrastructure and gives reasons why we concentrate on this type of road. Then
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it describes what mathematical modelling of traffic flow means, what applications
have already been implemented or are currently being tested and, last but not least,

what the objectives of this dissertation are in this framework.

1.1 Aspects and Relevance of Motorway
Traffic

There are both economic and scientific reasons to focus on motorway traffic when it
comes to traffic research, a few of which might be given here.

Speaking of the wider aspects of traffic, an efficient infrastructure is a prerequisite
of a powerful economy [83] and it is, therefore, of great importance that it should
be in an optimal condition. However, it seems that in most European countries
the upper bounds of the dimension and the capacity of the road network is almost
reached. This is likely to remain, because the road network of the Western world is
so advanced that it is impossible to shift its entire volume to alternative means of
transport. In the coming years, a rising demand for roads and their efficiency seems
to be inevitable, but the growing environmental consciousness of the 1980s and 90s
has set boundaries of this immense extension of road networks. Hence, the increase
in congestion in urban and rural areas and car use may lead to serious social, eco-
nomic and environmental problems, unless new technology is incorporated.

In this context, the FKuropean motorway network plays an important role. At
50 000km, it comes to less than five percent of the entire interurban road system, but
accounts for more than thirty per cent of the annual mileage of all vehicles [21]. The
economic use of motorways compared to other roads is far bigger in particular when
considering their lengths. Correspondingly, the average throughput of a German
autobahn reaches 43940 vehicles per day, whereas the throughput of an ordinary
interurban road remains just below 9500 [21].

For all road types, traffic jams are an important aspect, because their environmental
and economic costs increase from year to year. Politicians have begun to realize the
enormous amounts of money which are wasted by congestion. Figures for the Ger-
man road system lead to estimated annual costs of up to seventy billion pounds [3] of
which motorways form a major part. This equals several per cent of the GDP. The
vehicular traffic volume of the European Union has doubled between 1970 and 1993,
and the European Conference of the Ministers of Transportation (ECMT) predicts
an annual rise in traffic volume from 1.5 to 2.8 per cent for the next two decades
[25]. At the same time, the UK’s road congestion is forecast to increase by up to
seventy per cent in the next 15 years [82].

The car industry and public institutions noticed as early as 1970 that the rising

traffic volumes can only be managed by the current road system if more research is
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carried out. This is not only an engineering task and, hence, a matter of technical
applications; there is also a need for basic research including mathematical models
of traffic flow which should provide a better understanding of the intrinsic features of
the system. What all these measures have in common is that they try to maximize
the throughput of the existing roads and minimize the travel times. This could be

achieved by a combination of, for example,

e intelligent data response systems that make use of traffic flow modelling and

its predictions, delivering rules of thumb of how to operate these systems,

e understanding of how to collect, interpret and use online traffic data that could

identify the current flow regimes,

e tolling systems based on both current traffic levels and future predictions for

various time scales.

As well as the practical applications of traffic modelling, the range of patterns and
processes on motorways has raised the attention of applied mathematicians. The
formation and propagation of shock waves (rapid transitions along the road between
two zones of different flows), stop-and-go traffic (in which cars come to a total stand-
still in some regions and travel at intermediate speed in others), unstable flow that
breaks down under sufficient perturbation near on-ramps, and transitions between
different types of flow such as free flow, stop-and-go jams and synchronized flow
(in which overtaking is almost non-existent and vehicles drive at intermediate and
similar speed on all lanes with high flux) are all well observed phenomena. A nat-
ural question is whether they can be described and reproduced as results of simple
mathematical models.

In fact, most of them have been successfully interpreted using continuum models,
which are based on the traffic parameters car density and speed, and which focus on
the macroscopic features of the flow. However, car traffic is a rather dilute system
and, therefore, a common argument is that the flow should be regarded as a discrete
system. The governing equations of these models are based on the distance between
adjacent vehicles rather than on the density of vehicles.

In this work, a theory is derived of how to link these two descriptions. This is
achieved by the development of a new approach to relate spatial car density and the
distance between the vehicles. It turns out that the relation found in the literature
is only a lowest order approximation which does not apply to non-homogenous flow
situations. By analysing the correspondence of these models, we gain a deeper un-
derstanding of traffic flow modelling and are able to assess the validity of different
models by investigating their mathematical structures and numerical predictions.

One of these predictions is the range of transitions (wave types) between different
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flows as they occur along the motorway, in particular, in the vicinity of ramps. Here,
a closer examination of the wave types reveals which terms are important in certain
flow regimes, when nonlinearity dominates and when it does not dominate. One
may then try to identify real flow patterns with these theoretical predictions and,
thereby, to obtain a better insight into traffic phenomena, which may lead to im-
proved models of both the continuum and the discrete type.

Among the impacts and consequences for real motorway traffic are a broader un-
derstanding of flow regimes and how they are triggered, the forecast of maximum
throughput and how to control the flow to obtain it, and the simulation of slow and
fast lanes including different lane or vehicle characteristics, resulting in a better lane

usage.

Considering the link between car-following and continuum models, there is a tech-
nical reason why the latter can only be successfully applied to motorways and high-
ways. Due to the different density and speed regimes, the large number of junctions,
traffic lights and roundabouts, the simulation of urban traffic flow requires different
techniques from those described here. The complexity of urban road networks can
be tackled by discretized models such as the cellular automaton (CA), for example.
These models, which discretize both space and time, take the stochasticity of traffic
into account but they usually imply extensive numerical simulations. In contrast,
we do not focus on randomness but on some deterministic key parameters of the
flow such as inertia. To date, this coincides with methods of most traffic engineers
who base their work on deterministic car-following and continuum models. This is

another major justification for concentrating on these two types of models.

These arguments show us that the need for traffic research is immense, which leads
us to the next topic.

1.2 Mathematical Modelling of Traffic Flow

Improved management and control of traffic flow are counted among the great tech-
nological challenges [4]. Applied mathematics has an important role to play by
providing a basis to describe a complex stochastic system by a few mathematical
equations. This way, it forms a platform for online information, predictions of the
effects of new projects such as lane extensions or speed limits, and the understanding
of traffic flow as a physical process of interacting particles, namely cars and lorries.

We will now briefly present some problems of traffic modelling, what features it

contains and what practical implementations are already under way.

In traffic flow, we deal with an additional level of complexity compared to the de-
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terministic physical sciences, since it is not a fully controlled or determined system,
due to the considerable variation in human behaviour patterns, personal skills and
driving attitudes. The driver’s behaviour and attention towards traffic events change
with time, and the properties (physical size, maximum speed and acceleration) of
different vehicles vary randomly. At first sight, traffic flow is a stochastic rather than
a deterministic process, and in fact Adams regarded road traffic as a random series
as early as in 1936 [1]. In this context, mathematical modelling could be defined as
describing an intricate system by a few fundamental equations which are based on
averaging over numerous parameters.

Various complex stochastic processes in nature such as trail formations [76] or group
decision making [33] are already modelled by simple deterministic equations with
increasing success. With regard to traffic, car-following, granular flow and contin-
uum models are the different ways of simulating the flow, and each type has its
specific advantages and disadvantages. The first two classes are called microscopic
models, since they simulate each vehicle individually, whereas the latter belongs to
the macroscopic picture, making use of locally averaged quantities like speed or car
density, which represents the distance between the vehicles. Micro- and macroscopic
models give rise to some very important results. A stability analysis, for example,
demonstrates how the state of a platoon of cars depends on parameters such as
inertia and reaction time, which are the basic parameters of the models to simulate
the vehicle’s behaviour.

The simplest case, a one-lane model without any on- or off-ramps, is rather easy
to simulate, whereas the modelling of multi-lane flow is a much harder task. The
coupling of lanes seems to be crucial for the simulation and because it is also a
stochastic process, it is not clear how it is to be incorporated and how the lanes are
to be linked.

Traffic flow modelling may be used in understanding the effects and consequences
of local speed controls and autonomous headway control systems, which are already
implemented in various cars. Both have the task of maximizing the throughput of
the current road network as an alternative to increasing capacity by the extension
of further lanes.

DaimlerChrysler, for example, has already set up radar systems in recent S-class
models and has coupled lorries on a test track by using this technology [77]. The
major objective of this project, named Promote Chauffeur, is to find the most appro-
priate algorithm that controls the acceleration and the deceleration of the interacting
vehicles. It should be a compromise between individual benefits and the overall sta-
bilization of the flow.

Another result of flow simulations might be a reduction of fuel consumption because
a steady continuous flow saves energy in comparison with an irregular one, not to

mention the effect of jams. It is estimated that up to 200 billion litres of fuel are
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wasted in traffic congestion in the USA alone [42].
The potential of these measures seems to be immense. In fact, there are various EC,

public and privately funded projects which aim for making use of it [77]:

e Vita: test vehicle of DaimlerChrysler using a video camera to recognize road

marks, obstacles and traffic signals

e University of Berkeley: magnetic transmitters on the road surface allowing

vehicles to drive in a convoy on the Interstate Highway No.15

e EU plans to set up a satellite network to determine the exact position of cars

by GPS navigation system

e MAN runs the Adaptive Cruise Control (ACC) project in cooperation with
private companies, universities and the German Ministry of Transportation.

Since these driver supporting systems suit commercial and private as well as public

interests, it is a promising future market.

As already mentioned, traffic flow models reveal various nonlinear features including
shock waves, travelling waves, limit cycles, periodic orbits, solitons and phase tran-
sitions. The analogy to other physical systems such as granular flow, many-particle
systems and shallow water theory delivers powerful tools to tackle the nonlinear
governing equations. Therefore, this subject is not only a promising candidate for
real applications, but also a field of research in which new mathematical methods
are developed and tested. This is where a major contribution of this dissertation

lies, which brings us finally to the aims of this thesis.

1.3 Targets of this Work

Motivated by the importance of traffic modelling, in this thesis we examine a se-
ries of flow situations to uncover some of the fundamental aspects of traffic flow.
There are several approaches to traffic modelling as described above, and these are
explored and compared in chapter 3 where we focus on using discrete car-following
and continuum descriptions of the flow. We identify a series of objectives for the
modelling in this thesis and this is reflected in the structure of the dissertation. It
generally contains research on single-lane flow on motorways, which is presented in
the following six chapters and four appendices. The main results and numerical cal-
culations are carried out for one specific, simple model which, nevertheless, contains

most generic features of the flow.

First a historical summary of the principles of traffic low modelling is given.

Every model aims to reproduce some characteristic features of traffic such as flow
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breakdown, shock waves and stop-and-go jams. Depending on the purpose, the roads
(urban, interurban, motorway) and the speed regimes considered, different models
can be applied: continuum, car-following or cellular automata (CA). Each type has
similarities with data and observations of real traffic flow.

We provide this rather comprehensive overview of the literature for two reasons:
firstly, it presents the background on which this work is based and puts it into its
context, and secondly, it gives some motivation for our decision to use a particular

model throughout the course of this dissertation.

The third chapter reveals how to relate car-following and continuum models
by developing a transformation between headway (the distance between two succes-
sive cars, which is the key variable in car-following models) and car density which
is the key parameter in the continuum picture. It is revealed that the former is
not simply the inverse of the latter unless we have uniform flow conditions. This
theory is established for a specific model, known as the Bando model [8], which was
introduced in 1995. It is a very generic model in the sense that it is based on the
assumption that there exists an optimal-velocity function, which describes a desired
speed as a function of the headway, to which the traffic adjusts over some relaxation
time. The numerical and analytical results of the Bando model support the idea of
the equivalence of continuum and car-following models, where the correspondence
is more accurate when there are no sharp density gradients in the flow.

This concept can be used to derive continuum analogues of car-following models, and
vice versa. However, even if every model is analogous to a continuous or discrete
counterpart, the explicit time delay of car-following models complicates the simula-
tion of time lag in the corresponding continuum models, which shows the advantage
of the car-following over the continuum formulation with respect to delay terms.
The main work of this chapter has been published in [11, 33].

The fourth chapter gives an overview of analogous car-following and con-
tinuum models using the transformation that is derived in the previous chapter.
This list is presented for reasons of completeness and to uncover some differences
and similarities between the models. Lastly, it reveals some interesting effects when

a discrete model is turned into its continuum equivalent, and vice versa.

The following two chapters employ the insight that discrete and continuum models
are analogous to carry out a comprehensive numerical study of a range of steady

and unsteady flow structures in a car-following model.

Accordingly, in the fifth chapter, wave types in the stable Bando model are
classified. For different up- and downstream fluxes of vehicles, there exists a tran-
sition region along the road, in which cars adjust to the downstream flow regime

depending on their inertia. Among various transition zones, in some regimes it may
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take the form of a steady travelling wave, in others it may be dispersive or may even
assume a nonlinear wave type. Here, an analysis establishes a connection between
the latter and the wave fronts of stop-and-go jams. In addition, all wave types are
explained with the help of the flow-density curve (fundamental diagram), as well as
with the analogous continuum model.

The results have important consequences for varying sensitivities and autonomous
cruise control systems (ACCS). A changing sensitivity, equivalent to a more realistic
composition of a convoy, reveals that only a small portion of cars might cause a
change in flow conditions leading to increasing travel times of the following cars.
Likewise, this has to be taken into account when implementing ACCS. The algo-
rithms which control the cars should avoid these nonlinear wave solutions in order
to optimize travel time and throughput as well as safety. The interpretation of these
results may ultimately lead to the design of more suitable control algorithms.

The main results have been presented in [13, 14].

In the penultimate chapter, we look at an on-ramp simulation in the car-
following Bando model, where cars enter a motorway of initially homogenous
density and speed with a constant flux. We classify different regimes of the system:
they resemble those of the previous chapter, because they can again be interpreted
as a transition zone between a stream of different flows. Hence, we build on existing
results to present a diagram which summarizes the states near a ramp. The analysis
of this system might deliver a better understanding of how to set up appropriate
on-ramp metering.

Depending on the upstream flux and the ramp flux that sets in, various solutions are
found. Among these are homogenous congested and oscillatory congested traffic, as
well as solitary waves. These have also been found in previous on-ramp simulations
of continuum models and further underline the analogy between these two types. In
the case of the solitary wave solution, this is shown analytically.

This correspondence might be a bit surprising at first sight because the on-ramp
simulation is a continuous process in space and time when considering a contin-
uum model, whereas it becomes discrete in both dimensions when turning to a
car-following model.

The main parts have been published in [12].

The first appendix briefly introduces cellular automata (CA) as another class
of traffic flow models. This is mainly done for reasons of completeness rather than
further relevance for this dissertation because CA are becoming increasingly popular
in various applications such as simulations of pedestrians, urban and interurban

traffic or avalanches.

Appendix B contains some remarks on the transformation of chapter 3 relating

car-following and continuum models. It stresses in particular how to apply the
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inverse transformation.

Appendix C explains how time delay is incorporated into car-following models
by changing ordinary differential equations into differential delay equations. A
simple example shows that these two systems have entirely different formulations
and that one may expect new types of wave solutions. A few reasons are presented,

which support the idea of explicit time delay in traffic flow models.

The last appendix summarizes the numerical techniques that were used to
simulate the models. A remarkable difference in CPU time occurs when calculating

travelling wave solutions in the car-following and the analogous continuum model.



Chapter 2

Principles of Traffic Flow
Modelling

The mathematical modelling of road traffic has passed through a rapid development
over the last decade. The general increase of computer power enables system simu-
lations of rising complexity so that real time traffic simulation is no longer fiction,
but applied reality. However, these simulations are based on simple mathematical
models and without a deeper understanding of these, not only might the predictions
be unrealistic, but the interpretation of the results would be a very difficult task.
Various approaches are used depending on the corresponding traffic regimes, urban
(city) or interurban (motorway) traffic. The first is usually described by microscopic
models in which the trajectory of every single vehicle is given by its individual govern-
ing equation or algorithm. Among these, cellular automata (CA) and car-following
models are the most common [35], where the former are stochastic and the latter
deterministic.

In contrast, interurban traffic is described not only by microscopic but also by con-
tinuum models, which give a macroscopic picture of the events in terms of the density
and the velocity of cars. Since their governing equations show similarities to those
of other physical systems such as gas flow, various techniques to investigate their
solutions are already known. This helps to understand the underlying effects in
these models.

This dissertation mainly deals with motorway traffic. The basic difference from city
traffic is that neither junctions, traffic lights nor roundabouts are taken into account.
On- and off-ramps are regarded as sinks and sources of vehicles along the road, in

both continuum and car-following models.

The main objectives for road management are to increase throughput, avoid jams,

toll drivers, use data intelligently, cut pollution, etc. Empirical surveys, for example,
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have shown that the profitability of traffic projects depends strongly on their ability
to avoid congestion [9].

Here, simple mathematical models provide insight into the effects of road building,
lane blockage, speed limits, ramp metering and other measures on road use.

This chapter presents an overview of some of these models, in particular the deter-
ministic car-following and continuum models on which the remaining work is built.
By synthesizing the literature and comparing it with new results, we are then able
to draw new conclusions.

Another important aspect is that we focus on models that contain a relaxation term,
mainly embodied by the Bando model, and this chapter gives reasons why this class
is the main topic of this work.

However, we will first consider the characteristics of motorway traffic and how these

are built into the models.

2.1 Features of Road Traffic

No matter what type of mathematical model is chosen to describe traffic, it should
reproduce certain characteristics of real flow and real data. Unfortunately, the mea-
surement of traffic flow itself is not a straigtforward process. Induction loops along
motorways are only available every hundred meters, or even every few kilometers.
Moreover, only spatially and temporally averaged values of the speed, the density
and, hence, the flow are obtained. Typical average times are about 5 minutes due to
a minimum of counted vehicles to yield representative average quantities [50]. In ac-
cordance, continuous variables are discretized in space and time as time series. The
disadvantage of this procedure is obvious: lack of knowledge of the events between
the loops, poor time resolution and high uncertainty of the estimated variables. It
is, however, possible to extract three essential variables of traffic flow from this data:
the speed v and density p of the vehicles, and the flow ¢, which equals the amount
of cars that pass a fixed point per unit time.

Flow and speed can be measured easily at a given point, x, along the road by using
one induction loop, or the combination of two, respectively. The density is then

obtained by the most important relation of traffic flow modelling
q = pv. (2.1.1)

When the data is plotted as the flow against the density, we obtain the fundamen-
tal diagram shown in Fig. 2.1. It is this diagram on which most traffic models are
based.

If the speed of the vehicles depends uniquely on the density, the flow is also deter-

11
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Figure 2.1: The fundamental diagram of two lanes in terms of real traffic data. The critical
density, p =~ 50veh./km, can be clearly observed as well as the coexistence of two phases
(hysteresis effect): free flow (straight line) and synchronized flow (scattered points) [4].

mined solely by the density, via

a(p) = pv(p)- (2.1.2)

Figure 2.1 shows that this is roughly fulfilled for low densities and, hence, free
flow situations. However, for higher densities the data becomes more scattered. In
the unstable regime (p > 50veh./km), the cloud of points does not allow a definite
allocation of the density to the flow. This area is named the synchronized flow regime.
The scattering gives a strong indication that the speed does not only depend on the
density, but also on other variables such as the gradient of the car density or the
traffic situation during some preceding time interval.

However, for stationary, homogenous and stable situations, Eq. (2.1.2) is regarded
as a reasonable first-order approach and several conclusions can be drawn from it.
The equilibrium velocity v(p) should obviously be a monotonic decreasing function
and, therefore, ¢ turns out to be convex, at least in some density range. For non-
homogenous flow conditions, this can lead to the formation of shock waves, if one
assumes as a lowest-order approximation that the cars react instantaneously to the
traffic situation. This is equivalent to a lack of inertia. Then the speed c of density

waves is given by the gradient of the tangent in the fundamental diagram [84]

c(p) = d'(p) = v(p) + pv'(p) < v(p), (2.1.3)

12
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time —— [s]

Figure 2.2: Data extracted from aerial photographs along a highway shows a shock wave
travelling upstream [81].

as shown in subsection 2.2.1. In the convex regime of g, this is a monotonic decreas-
ing function and, hence, regions of smaller densities catch up with those of higher
densities until a shock forms. This is an essential result of traffic flow theory and
avoiding these shocks in reality is a major task.

Moreover, Eq. (2.1.3) shows that density waves, and hence information, never travel
faster than cars. This must certainly be fulfilled, or otherwise information would
travel faster downstream than the cars. This would only be possible if the drivers
could react to traffic events behind them which usually have no influence. In the
context of Eq. (2.1.3), the function v'(p) would have to increase monotonically in
some density ranges, which contradicts the available data. More attention is drawn
to this fundamental diagram later on.

However, there is more to traffic data than the fundamental diagram. We now de-
scribe some of the important observations and basic phenomena of road traffic data,
which ideally should appear in a model also. Among these characteristics are:

e The structures of stop-and-go clusters: the velocity of cars in- and outside
a jam, outflow of escaping vehicles, densities of the clusters and the interme-
diate regions of large headways, as well as the speed of the upstream moving
cluster fronts, seem to be unique quantities [48, 50].

These are reproduced very well by the car-following Bando model that we use

in this dissertation.
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Figure 2.3: Jam waves of high (white) and low (black) density travelling upstream between
junctions J10 and J15 on the M25 London ring [2]. The waves are parallel, and of constant
gradient and, hence, constant speed.

e The formation of stop-and-go traffic (“phantom jams”) without any obvi-
ous reason. Figure 2.2 reveals how a transformation from an originally dense,
but rather homogenous flow (1.0km—1.5km) to a shock wave might occur. The
latter travels upstream at a speed of approximately 10 miles/hour: this, ac-
cording to worldwide traffic data, seems to hold for any motorway in any coun-
try and can, thus, be regarded as an intrinsic feature of the system (Fig. 2.3).
The flow only becomes unstable in certain regimes of the density [28].
Chapter 5 explores similar nonlinear waves that form a transition between

zones of different flux.

e The broadening of the speed distributions when approaching the critical
density of flow breakdown was first measured on the German autobahn A5
in 1976 [53]. On the onset of traffic jams the speed variance spreads out and
returns to its Gaussian shape when the jam dissolves [51].

This phenomenon is not investigated further in this thesis, but it remains an

interesting question whether a car-following model can reproduce it.

e Synchronized traffic appears on motorways of rather high densities. The
lanes are strongly coupled, which leads to a homogenous movement of vehicles
on all lanes, with an overall low velocity but high throughput [34, 36]. Over-

taking is impossible, and lane-changing rare compared to free flow or traffic

14
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Figure 2.4: (a) A qualitative diagram of the occuring traffic states and their maximum
(out)flows: free flow (F), jam (J) and synchronized flow (hatched region), as interpreted
by Kerner [44]. (b) Phase transitions between these three states can only be caused by a

sufficiently large density perturbation in the corresponding density regimes. In accordance,

the likelihood of the transition free flow < synchronized flow (Fs) between p:p, and plfree)

is the highest, of synchronized flow < jam (S;) transitions between pp and pmaz is less, and

of free flow <> jam (F) transitions between p, and pac” is least. The form of S depends

on the density of the synchronized flow and varies across the range [pp, Pmaz]- Only one
specific example S; is shown here.

jams. It typically occurs at on-ramps where a localized perturbation causes a
linearly stable free flow of high speed and flux to break down and move more
slowly [49]. The transition back to free traffic occurs at lower density and
higher average velocity than the original transition (a hysteresis effect). Mo-
torway data shows that synchronized flow consists of a great number of steady
state flows along the road. Each state is characterized by its density and its
flux. However, these two variables are not related by a functional expression
(2.1.2) any longer, which results in scattered data points in the fundamental
diagram, when these steady state regions pass an induction loop.

Whether free flow turns into a synchronized flow, or into a stop-and-go jam,
depends crucially on the initial conditions and it is not fully understood yet,
though it might be explained by the nonlinearities involved in traffic flow [48].
However, it seems that the most likely transitions in traffic flow appear as free

flow < synchronized flow and synchronized flow < jam formation. A tran-
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sition from free flow straight to jams is rather unlikely due to the size of the
perturbation that is required (Fig. 2.4).
In chapter 6, a traffic state near an on-ramp is discussed, which some authors

have refered to as being synchronized.

e Traffic data from the Dutch freeway A9 Haarlem-Amsterdam suggest that
adjacent lanes show a strong correlation with respect to the temporal evo-
lution of densities pi(z,t) and pa(z,t), for given = [28]. Their difference is
mainly a function of the overall density [30], and the same holds for the speed
variances of both lanes, ©;(z,t) =< (v;—1;)? >. The latter is not only strongly
correlated, but considerably lower for synchronized than for free flow [49].

However, multi-lane flow will not be of further relevance to this thesis.

e The governing equation of a car-following model should somehow represent the
experimental studies of driver behaviour towards preceding cars carried
out by Chandler et al in 1957 [16]. Their simple observations tried to assess
the driver’s response to vehicles one or two ahead. Similar work by Bando et

al [7] led to the generic model used throughout this thesis.

A major task of research in traffic is to control the flow so that it does not assume
some of the states presented above. Among these are shock waves, which can lead
to dangerous driving manoeuvres, and transitions into states of lower throughput
leading to increased travel times and higher pollution. In contrast, low travel times
and a maximum flow represent the ideal state of the system and on-ramp metering,

as well as online speed limits, might be future options to control this.

2.2 Mathematical Models

Owing to the problems in simulating traffic flow, three different approaches have
been developed in parallel. The reasons for this arise from the observation of funda-
mental laws governing behaviour and interaction properties of the vehicles. In this
section, we describe the two deterministic approaches in greater detail, and revise
the historical development of each, leaving a brief description of the stochastic class

to appendix A.

The first mathematical approach to traffic flow was Greenshield’s study of traffic
capacity as early as 1934 [24]. However, Lighthill and Whitham’s theory of traffic
flow on long crowded roads marks the beginning of the deterministic macroscopic
models [58]. The authors explain the existence of shock waves and the evolution
of density waves by a differential equation for the density p. Here, an explicit func-

tional relation between the flow in terms of the density (fundamental diagram) is
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used. This description is in full analogy to fluid motion such as, for example, fluid
waves and glaciers [84]. Since average densities and velocities rather than discrete
sets are used, this model embodies the basis of the so called continuum models.
Later this approach was extended by Payne [71] and Kiihne [53] to higher order
models, which couple density, velocity and, in current models [29], even the speed
variance in corresponding partial differential equations. Also, a Boltzmann-like ap-
proach has been suggested using the analogy between vehicles and molecules [73].
Simultaneously, microscopic models were developed, which examine the entire
flow by looking at the movement of each vehicle. In these theories every car motion
is coupled to the preceding car by either a deterministic equation or a probability of
following within a certain distance. Car-following, cellular automata, queueing
and mean-field models all belong to this class.

In 1958 Chandler et al carried out a multitude of experiments to determine the
relation between acceleration, distance to the car in front and its temporal change
[16]. Based on these results, the first car-following models were established. They
were continuously improved and are now capable of reproducing most of the char-
acteristic features of motorway traffic, as mentioned above. A governing equation
that is of second order in time seems to be necessary to match these findings. These
models have received considerable interest over the last 10 years owing to computers
which enable the simulation of nonlinear flow regimes. This now provides a valuable
complement to the continuum approach for which some analytical solutions have
been found. The combination of the numerical modelling of car-following models
with the analytical description of nonlinear phenomena using analogous continuum
models forms a major aim of this thesis.

However, before we proceed with the deterministic models, it should be mentioned
that increasing attention has been paid to granular flow theory in recent years. In
certain regimes, the stochastic properties of traffic flow can be simulated success-
fully by cellular automata models. Among these, the Nagel-Schreckenberg model
[68] gave rise to new ideas in this field of research. Even though we will not consider
these models for simulations in this dissertation, a brief overview of the ideas and

the theory of this ansatz is given in appendix A, for completeness.

There are several reasons why we confine our investigation to the deterministic mod-
els in this work. They are not only successful in describing certain aspects of the
flow, but also give an insight into its underlying effects. There is even one application
where randomness is not important at all: the study of automated vehicle control
systems. In addition, the analytical link between continuum and car-following mod-
els in this publication might be considered and used as a basis to connect these
to cellular automata, providing a better understanding of how stochastic features

influence the flow.
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2.2.1 Continuum Models

For road engineers, spatially and temporally averaged quantities, such as density and
flow, are often of more interest than the tracking of individual drivers. Therefore,
the impact of road geometries and speed controls on a large scale is often simulated
by continuum models. They are based on the macroscopic traffic variables of density
and speed, which evolve according to a coupled set of partial differential equations.
The validity of these models can only be tested by comparison with traffic data,
and it is this procedure that shows the limits of this theory. Formally, the flow in
Eq. (2.1.1) is defined as the number of vehicles that passes a point along the road
in unit time, and the density p is the number of cars per unit distance. Since traffic
measurements are carried out by induction loops, only the flow and the speed are
monitored. The direct measurement of the density would require aerial photographs.
However, an obvious definition for the current flow ¢ at time ¢, and position = along
the road would be

q(z,t) = lim , (2.2.1)

At—0 At
with N being the number of vehicles passing during [¢,¢ + At]. In reality, this limit
will equal zero, since no car will pass the induction loop in an arbitrary small inter-
val, but it can be approximated by a time averaged value (typically 1 to 5 minutes
in traffic data), if the change in flow during this period is sufficiently small. This
means that the continuum formulation is only accurate for traffic situations in which
the change of traffic quantities only occurs on a length scale much bigger than the
headway of cars. An explicit example is given in chapter 3, where the validity of a
continuum approach to a car-following model breaks down for rather large spatial
gradients of the density.

A speed measurement might be performed in two different ways: either at a given
point in time along the road (instantaneous speed distribution), or at some point
along the road during a time period At (local speed distribution). Their arithmetic
averages are different for non-homogenous flows. The latter procedure counts rela-
tively more vehicles of higher speed, since they pass a fixed point more often than
slower ones relative to the composition of vehicles.

To take this into account, the space mean velocity of the local speed distribution is

defined by its harmonic average

n
t) = lim — 2.9.9
v(z,t) Jim ST (2.2.2)

where n vehicles of speed v; are measured at = during a time interval [¢, ¢+ At]. This

equals the arithmetic average of the instantaneous speed distribution [57], which is
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most welcome because we can see by the definition of the latter

Az—0

v(z,t) = lim {i @ :Vz; € [z, x + A:c]} , (2.2.3)

that this is the mean speed we are searching for. Here, x; denotes the position of
the ¢-th vehicle. The local density is then given by

q(=,1)
v(z,t)’

p(z,t) = (2.2.4)

and can, therefore, be extracted by the measurements of the flow and the velocity.

2.2.1.1 Lighthill-Whitham Model

The first research on the continuum formulation was based on a differential equation,

the conservation of cars

pe(z,t) + gz(z,t) = pi(z,t) + [p(z, t)v(z, )], = Q(z,1). (2.2.5)

It states that the number of cars on the road is a conserved quantity, unless there
are sinks (off-ramps, @ < 0) or sources (on-ramps, @ > 0) along the road.

Lighthill and Whitham [58] transformed Eq. (2.2.5) into a single partial differential
equation (PDE) for the density by assuming that the velocity, and hence the flow,
is determined solely by the density

v="V(p) = q=4qlp) (2:2.6)

It means that no inertia is taken into account, since the cars adopt their speed
instantaneously [39]. Even though this is an unrealistic assumption, it first estab-
lished dynamic traffic modelling. The governing equation then turns into a nonlinear
partial differential equation

Pt + Gppz = 0. (2.2.7)

This yields that density waves travel with a local speed c(z,t) = q,(x,t). The speed
may be interpreted as the first derivative of the flux as a function of density and
is, therefore, the gradient of the tangent in the fundamental diagram (Fig. 2.7) at
the corresponding density p. The waves which are governed by the single equation
(2.2.7) are also known as kinematic waves. On the corresponding trajectories X (¢)

with X;(t) = c¢(z, t), the density is constant since

dp(X (1), 1)

= pu(X (1), 1) + palX (8), ) X(8) = 0. (2.2.8)

This is why the method of characteristics can be applied to solve this PDE: for

any initial distribution p(z,tp), we can find the density distribution at later times

19



Chapter 2: Principles of Traffic Flow Modelling

road

Figure 2.5: The formation of a shock only appears if 8% (g—g) < 0 is at some point along
the road. to: initial distribution, ¢;: intermediate solution, ¢,: shock wave formation.

by moving the local density with its corresponding speed X (t) = g,(z,t) down the
road.

Lighthill and Whitham give no explicit expression for the speed function V(p),
though they stipulate that it should be monotonically decreasing and ¢(p) convex.
The velocity of density waves is then a monotonic decreasing function of the density
Eq. (2.1.3), which means that regions of low density travel faster than regions of
higher density. (The speed of the cars should not be confused with the speed of the
density waves; they are different.) In terms of Fig. 2.5, it implies that dispersion
dominates where the density decreases downstream and that wave steepening dom-
inates where it increases. In the latter case, the regions of higher density catch up
with those of lower density and the method of characteristics no longer applies since
p(z,t) becomes multi valued. Instead, a shock wave forms, as presented in Fig. 2.5.
Its speed ¢, is given by the conservation of cars as
41— Q2
CpL—p2

(2.2.9)

S

and can be either negative or positive (up- or downstream propagating wave). Re-
spectively, ¢; and p; are the upstream and downstream values of the jump [84]. In
addition, the position of the shock front is determined so that the areas of region A
and region B are equal in order to conserve the amount of cars.

The speed change that drivers encounter when passing a shock is immense, due to
intense braking, as Fig. 2.5 suggests. In contrast, there is no discontinuity in real
traffic. This can be taken into account by higher order terms (pz, pzz) in the model,
which lead to shock smoothing and, hence, a more realistic picture [60].

The flow-density curve Eq. (2.2.6), which has to be substituted into the equation
for the conservation of cars, is ambiguous. Numerous functions were proposed and

fitted to data. It seems that there is no unique relation that can explain all the
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effects which occur in traffic flow. However, the functions ¢(p) and v(p) have to

fulfill three basic properties:

e g(p=0) =0: no flow without cars
® ¢(pmaz) = 0: no flow when traffic assumes its jam density pmqz

e v'(p) < 0: otherwise, vehicles could be overtaken by density waves as shown
by Eq. (2.1.3).

Various functions are presented in the following sections. However, the model (2.2.7)
always shows shock formation in the free flow regime if ¢ fulfills these requirements.
This instability is rather unrealistic since real traffic is only unstable for sufficiently
large densities p > p.. In contrast, the model does not account for the existence
of some form of dispersion in the free flow regime, which represents the drivers’
responses to fluctuations and smoothes out small perturbations.

Since the model is not applicable in the free flow regime, and since it cannot re-
produce the downstream shock front of stop-and-go traffic clusters, it had to be

extended to a higher order model including inertia.

2.2.1.2 Prigogine’s Boltzmann-like Model

Before the Lighthill- Whitham model was extended to higher order, Prigogine and
Andrews [73] proposed a Boltzmann-type ansatz for a velocity distribution function
f(z,v,t), similar to the Maxwell-Boltzmann collision theory of gases. The expres-
sion f(z,v,t)dzdv represents the probability of a car being in the road element
[z,z + dz], and in the velocity range [v,v + dv| at time ¢. This stochastic theory is
based on two effects: a relaxation term for the driver’s adjustment to an equilibrium
velocity fg, and a “collision” term which describes the interaction of vehicles. The

former is similar to the relaxation terms used in later developed continuum models,

flz,v,t) ~ fo
T )

if(relaz)(a:’ v, t) — _

2.2.1
o (2.2.10)

so the traffic tends to assume the equilibrium state fo over some time interval T
The “collision” term is proportional to the deviation of the velocity distribution
from its mean speed ¥ — v, weighted by the probability density f(z,v,t) of finding
a car in this regime, and the density c of the cars. Their product is proportional to

the number of “collisions” per unit time

%f(coll) (2,0,8) = a c(z,t) f(z,0,t) (& — v), (2.2.11)
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with some constant of proportionality a. If these terms are put together, they yield

a nonlinear integro-differential equation for f,

f(-T,U,t) — fO

T +a c(z,t) f(z,v,t) (0—0), (2.2.12)

%f(xa v, t) = -
where ¥ is given by

Jvf(z,v,t)dv  [vf(z,v,t)dv

[ f@,v,t)dv — c(a,t) (2.2.13)

v =

This model forms the basis for recently proposed models such as Helbing’s (see
following pages), which couples the density, velocity and its variance in a system of
PDEs [10, 27].

2.2.1.3 The Payne Model

Based on the idea of Lighthill and Whitham, a higher order continuum model can
be derived, if one assumes that the velocity is not only a function of the density, but
also of its gradient p, and possibly even higher order terms such as diffusion p,;

v = V(p7pt7pm7pzz7"-)' (2214)

It means that drivers do not only adjust to a local traffic situation, but also to events
further ahead. Their speed is different depending on whether there is more congested
(pz > 0), or less congested (p; < 0) traffic ahead. The term p; can be interpreted
as an inertia term, because it relates the current speed to former traffic situations
[72]. However, the adjustment is still instantaneous, and hence not realistic.

Payne [71] suggested that the speed obeys its own dynamical equation, rather than
a relation like (2.2.14). It is determined by both the surrounding flow and its inertia,
which occurs as a “retarded” reaction to a given traffic situation.

Payne uses a relaxation term similar to Prigogine’s to represent the driver’s tendency
to adjust to an optimal velocity (OV) V(p) which depends on the local density.
V(p) is the equilibrium velocity of a platoon of cars with density p: in other words,
if a vehicle leads a platoon of cars with velocity v, the car behind follows in some
safety distance (headway) b(v) = 1/p(v) = 1/V~1(v). Instead of assuming a general
equilibrium velocity v, it now becomes a locally varying parameter, and the equation

for the conservation of cars
pt+ (vp)z =0 (2.2.15)

is closed by a partial differential equation for the velocity
1 Pz
vt = o V(p) —v] — u;. (2.2.16)
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The velocity function was fitted to traffic data from several freeways in Los Angeles,

obtaining the form

V(p) = min(88.5,172 — 3.72p + 0.0346p> — 0.00119p") km/h, (2.2.17)
and
T = =15 (2.2.18)
o240 7 -
p = 13km?/h?. (2.2.19)

The last term of the dynamical equation represents the driver’s anticipation to the
preceding traffic events: increasing congestion (p; > 0) reduces the acceleration,

and vice versa. It can be written as

ppe 1 d (p) = PePs.

p  pdx p

(2.2.20)

pis called traffic pressure, because it is of a similar form to its gas-kinetic counterpart
[62].
This model is unstable for small perturbations of arbitrary wavelength to an initial

homogenous distribution py for which

POy (pe) > 1 (2.2.21)

Vi

holds [71]. This is a much more realistic result than Lighthill-Whitham’s model,
because it is stable in the free flow regime, and becomes unstable for p > p. towards
congested flow. The critical density p. is given by the root of Eq. (2.2.21), and is
of the order of 25 vehicles/km, which is approximately 1/7 of the maximum density
assumed in a jam [54]. However, this model is still not able to describe cluster

formations, as observed in real traffic.

2.2.1.4 Kiithne Model

Kiihne included a dissipation term of the form vwv,, on the right hand side of the

dynamical Eq. (2.2.16), to obtain a Navier-Stokes-like equation
_ 1 Pz
v+ VU = T V(p) —v] — u? + VUgg. (2.2.22)

This term is of viscous nature and smears out the discontinuities that the Payne
model still contains [53].

Kiihne investigated roll wave solutions both of Payne’s and his model (2.2.22). By
doing so, he showed the similar nature of continuum models of traffic flow and
flood waves in open channels. The shapes of the periodic roll wave solutions of

the Payne model are fully determined by their minimum density (water height),
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but since no continuous periodic travelling wave solutions exist, discontinuities have
to be introduced to fit piecewise continuous solutions together. This changes with
the dissipative term. Now continuous periodic solutions exist, which are similar
to cluster shapes in traffic observations. Therefore, this model forms the basis for
further developments.

Moreover, it has the same stability criterion as the Payne model [54], and Kiihne

showed that this system passes through Hopf bifurcations to form stop-and-go traffic.

2.2.1.5 The Kerner-Konhauser Model

Kerner and Konhéuser discovered that the Kiihne model reproduces most of the
characteristic features of traffic flow [46, 47, 48, 50], if the dissipative term is slightly
changed. Since their values do not depend on the initial conditions, the authors speak
of self-organization, which always leads to a specific set of parameters determined
by the nonlinearity of the system.

A modification yields

1 Pz Ve
v + v, = = [Vier(p) —v]| — p— +v— 2.2.23
¢ 7 Vir(p) = 0] = P P ( )
with
(0= p)/0) " 1= i/
Vier(p) = vo <1 + exp f) - (1 + exp T) . (2.2.24)

The maximum speed at p = 0 is proportional to vg, and at p = p = 180veh./km, the
traffic comes to a standstill (v = 0). p; = 36.5veh./km and o = 0.02875 are obtained
by fitting to traffic data, which leads to a model that is unstable in a regime p > p,,
but stable in the free flow region.

However, cluster formation (Fig. 2.6) can appear in the linearly stable regions of the
density as a nonlinear instability, if the perturbation is sufficiently large [44]. On the
other hand, a cluster might also disappear in this regime. Therefore, this process
is interpreted as a transition between different metastable states in a metastable
regime.

The authors investigate the formation, shape and dynamics of these clusters in great
detail. They argue that this model gives an explanation for phantom traffic jams,
jams which occur without any obvious cause. Bevan [15] found similar features in
the car-following Bando model of road traffic. We come back to this in chapter 3.
A typical shape of one of these developing clusters is illustrated in Fig. 2.6. It is
an up- or downstream travelling congested region in which cars have to brake when
entering, and accelerate when leaving it, followed by a tail of relatively free flowing
traffic.

There are also “anticlusters”, local regions of free flow traffic within congested traffic
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road

Figure 2.6: A qualitative cluster solution of the Kerner-Konh&user model (2.2.23) in the
metastable regime. The asymmetry is remarkable, with a consequence of the harsh braking
when entering and a more moderate acceleration when leaving the cluster.

which remind one of the dark soliton solutions of the nonlinear Schrédinger equation.
In fact, Kurtze and Hong [55] revealed that the Kerner-Konh&user model can be
transformed into a perturbed Kortweg-de-Vries (KdV) equation near the onset of
instability, and that the traffic jam can be identified with a soliton solution of the
KdV equation. A similar analysis was carried out by Komatsu and Sasa [52] for the
Bando model (subsection 2.2.3). Here, the cluster fronts can be described as kink

solitons of a modified KdV equation.

2.2.1.6 The Helbing Model

More complex models have also been developed starting from Prigogine’s ideas of a
velocity distribution function where traffic is simulated by a kinetic gas law. This
introduces some aspects of stochasticity through the introduction of a granular tem-
perature governed by a third equation, and this accounts for fluctuating traffic pa-
rameters and dispersive effects.

Helbing [27] constructed a gas-kinetic traffic model, based on individual driver be-
haviour, concerning acceleration and interaction of vehicles. The author derives
macroscopic partial differential equations for the density, the velocity, its variance
and higher moments. This system is open, and has to be closed by assuming that
one of the higher moments adopts its equilibrium value. In this formulation, the
Lighthill-Whitham model is a zeroth-order approximation.

First Helbing defines a phase space density p(z,v,vo,t). It is a probability density
which describes the probability of finding a car at z, with velocity v, and desired
velocity vg, at time . The gas-kinetic traffic model is derived by assuming a con-

servation equation for the phase space density and once again, a relaxation term
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for the speed is introduced. Together with a Gaussian form for the desired speed
distribution, and a Boltzmann equation for the vehicle interactions, it leads to a

system of equations of the form

pe+ (0p)e = 0, (2.2.25)
1 1

Ao = Ve(p,2,0) — 7] = (s0)s, (2.2.26)
2 2000,

0+70, = —[0c(p,5,0) - 6] - ”(j”. (2.2.27)

Here, the variables p, v and © are extracted from the phase space density g by their
corresponding integral definitions as average quantities [27]. As in former models,
the equilibrium velocity Ve, and the equilibrium variance ©®, must be given explicitly.
Again, the fundamental diagram has direct influence on the model via the function
Ve.

The velocity distribution and the power spectrum of the time dependent vehicle
density were measured along the Dutch freeway A9 [29]. It confirms that the as-
sumption of a Gaussian velocity distribution is justified. However, its skewness varies
with the density, and it is difficult to find an analytical expression to substitute into
the model.

Helbing also showed that a slightly simplified version of the model (2.2.25)-(2.2.27)
[79] describes the formation and phase transition of various traffic states on a single
lane caused by ramps [36], as well as other nonlinear dynamical phenomena such as
cluster formation of stop-and-go traffic, and its characteristic parameters.

This model is interesting because of the explicit relation between microscopic driver
behaviour and macroscopic traffic equations [30]. The model can be used to exam-
ine which assumptions lead to which former models, and where the problems of the
formulation of a consistent continuum model lie.!

Moreover, Helbing showed that some features of the flow, such as the broadening
of the speed distribution at the onset of a traffic jam, are in good agreement with
former measurements [53]. However, the question remains open of whether these
features could also be contained in a car-following model that contains different ve-
hicle and driver types or reaction time. Since this is still unclear, we restrict out

attention to simpler models in this work, which brings us to the next subsection.

2.2.2 Car-following Models

We now focus on deterministic microscopic models of road traffic. They attempt to

capture the discrete nature of the system, and simulate each vehicle individually by

LA final note on continuum models: it is of great doubt whether macroscopic traffic flow will
ever be properly described by quantum mechanics [5].
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its own dynamical equation. It is usually modelled using a differential delay equation

of the form
On(t +T) = V(bn(t), bn(t), va(t)), (2.2.28)

where T is the driver’s reaction time, b, the headway denoting the distance to the
car in front, and v, the car’s velocity. The car-following models which have been
proposed so far mainly differ through the function V. Here, we discuss several
car-following laws and examine their stability and fundamental flow characteristics.
However, for the main calculations of the thesis, we adopt the optimal-velocity model
suggested by Bando et al [8] (subsection 2.2.3).

Car-following models can be studied both analytically and numerically. Much of the
initial research was analytical since it predated powerful computers and examined
the linear stability of perturbations for a steady flow [16]. The advent of modern
computers, however, has enabled investigations of the associated nonlinear evolution
of linearly unstable flow regimes and this approach is taken herein.

Table 2.1 gives an overview of the car-following models in chronological order, their
stability criterion (next subsection) and the corresponding equilibrium flow-density

curve, the fundamental diagram (next subsection but one).

2.2.2.1 Stability

In most models, an explicit time lag T is introduced to account for the driver’s
retarded reaction to current traffic situations. This leads to a differential delay
equation (DDE) like Eq. (2.2.28).

Time delay and inertia are often confused, even though they are two different pa-
rameters. In the Bando model, for example, one might think of the sensitivity a as
the inverse of the relaxation time T' = 1/a, which is the system’s adjustment time to
an equilibrium. However, the Bando model is not a DDE and strictly speaking, this
relaxation time corresponds rather to the inverse of inertia than to reaction time
since the response is proportional to a. In a given traffic situation, a car will brake
more harshly the bigger this parameter is.

Therefore, inertia 1/a is explicitly incorporated in all second-order models (Z,, = vy,).
In contrast, Newell’s model is of first order in time (&, = v,), and does not incor-
porate inertia at first sight. However, the cars do not assume their speed, which de-
pends on the traffic situation, instantaneously. Like the vehicles of the second-order
models, they need some time to adjust. This means that a first-order car-following
model without an explicit inertia term might, nevertheless, incorporate some sort of

intrinsic inertia due to the retarded reaction time of the driver.

Since the acceleration and deceleration are also functions of the density, we expect

time delay, inertia and density to be the major parameters in a stability analysis.
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CAR-FOLLOWING MODELS

Chandler model [16]: v, (t + T) = ab,(t)

Stability: 27a < 1

Flow: ¢(p) = a(1 — p/pjam)

Gazis model [23]: 0, (t + T') = 550 (?)

Stability: 2Tap < 1

Flow: ¢(p) = apIn(pjam/p)

Pipes model [72]: 0,(t +T) = ﬁbn(t) , SEN
Stability: 2Tap® < 1

Flow: g(p) = 12,0° tcp

(Advanced) Edie model [23]: 0,(t+ T) = %T:—Tmb (t), m,seN

.
Stability: 2Tap® [a(l ™) 53— 1—|—c] >1

1

Flow: q(p) =p [a(l ™) ps1 4 c} -

Newell model [70]: v,(t +T) = Vinge ll — exp {—Vsaz [bn(t) — bmin]}J
Stability: 2TV’ <1

Flow: q(p) = pV(1/p)

Bando model [8]: v,(t) = a[VB(bn(t)) — vn(t)]

VB (b) = tanh(b — 2) + tanh(2)

Stability: 2V; < a

Flow: q(p) = pVB(1/p)

California model [16]: v,(t+ T) = a [bn(t) + d — T1vy]
Stability: aT? > 2

Flow: ¢(p) = 7-(1 = p/pjam)

Double look-ahead model [37]:

n(t) = arbn(t — TL) + az(bp + b ) (¢ — To)

Stability: 52igatyy > @ iubRt

Flow: ¢(p) = a1 + 2a2 + ¢p

Hayakawa model [26]: 0, = a[U(bn)V (bn—1) — vn]
U(b) =Vg(b), V(b) =1+ fo[l — tanh(b— 2)]

Stability: 2(UV)2 > a(UV' — U'V)

Flow: q(p) = pU(1/p)V (1/p)

Intelligent Driver Model [80] Uy =a {1 _ (%)5 B (M)T

80
s*(v,b) = so+ 814/ +Tv+ 2\/—
Stability and Flow: no analytical expressions.

Table 2.1: An overview of car-following models, their stability criterion and equilibrium
flow-density relation.
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In fact, Holland [39] found that all car-following models obey a similar stability
criterion. It states that a model is stable if the reaction time of the drivers is smaller
than their anticipation time. The latter is basically given by the quotient of the
equilibrium headway and the inter-vehicle wave speed of a disturbance. This yields
the time in which a disturbance travels upstream from one vehicle to the following.
Holland was able to show that this criterion holds for all the models summarized in
Tab. 2.1 (apart from the intelligent driver model, which remains to be shown).
There is one crucial difference in the stability criterion between various car-following
models. For a given set of parameters T' and a, some are either stable or unstable
for any initial equilibrium density, some are unstable for a sufficiently large density
p > pe, whereas more recent models are only unstable in an intermediate regime
pel < p < pe2, in which stop-and-go traffic forms?. Among the latter are the Bando,
California and Hayakawa models. They are different from the earlier developed
models, because they are based on a relaxation term, rather than on the change in
headway.

It should be noted that instability can lead to a discontinuous flow-density curve,
as shown in Fig. 2.7, which seems to agree with traffic data quite well. However, we

assume stable flow throughout Tab. 2.1 with respect to the flow-density relations.

2.2.2.2 Flow-density Curves

In homogenous stationary flow, the speed and the headway are constants in time and
among the cars, and the dynamical equations can be integrated because the time lag
T is irrelevant. The car-following laws then reveal a speed-headway relation v = v(b)
[22, 72]. Since for these situations the headway is the inverse of the density b = 1/p,
this also leads to flow-density curves ¢ = ¢(p), which can be compared with traffic
data.

As an example, we consider the Bando model. In case of overall stability and

homogenous flow (9, = 0), the flow-density curve is continuous and is given by
v="Vp(b) =Vs(1/p) = q=pVs(1/p). (2.2.29)

VB is again called the optimal-velocity function, since it gives the driver’s desired
speed for a traffic situation of a local headway b, which he adopts during T = 1/a.
This is similar to the relaxation term of the continuum models.

From Tab. 2.1 it can be seen that not all car-following models fulfill the requirements
of flow-density curves, as stated in the previous subsection. The characteristics are

violated by the following models:

2Note that the instability depends both on the density of the perturbed flow and the wavelength
of the perturbation.
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Figure 2.7: The fundamental diagram of the Bando model [4]. A discrete jump in flow
appears when the model becomes unstable between critical densities p.1 and pes.

e ¢(0) # 0: Chandler, California, double-look ahead

¢ g(pjam) # 0: Advanced Edie, Bando.

2.2.2.3 Nonlinear Features of Car-following Models

Even if some models appear simple, the reaction time introduces nonlinearity into
the system and thereby leads to nonlinear phenomena. As shown in appendix C, for
example, a linear system including damping might display oscillatory behaviour for
a non-vanishing time lag, even though there is just a decaying oscillation when the
time lag is zero. Hence, it is not surprising that new effects arise from the explicit
introduction of a driver reaction time. However, we will not consider this factor
in this dissertation, because we develop a link to the continuum models which, to
date, do not contain any time delay.

In addition to the discrete jumps in the flow-density curves, the stop-and-go clus-
ters, which form in some car-following models (Fig. 2.8) [15, 26], are of similar form
to those of the Kerner-Konh&user model [38, 48]. In chapter 3, it is revealed that
there is a strong analytical relation between these models. Moreover, they produce
similar results in the form of travelling wave solutions in which a specific nonlinear
wave type occurs.

The characteristic parameters of these clusters, such as their speeds and densities,
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Figure 2.8: An initial disturbance in the Bando model causes the formation of stop-and-go
jams on a ring road [39]: the darker the region, the higher the density.

and the free flow density between them, could be explained analytically for a Heav-
iside (78], as well as for a piecewise linear OV function [69]. We expect that this
phenomenon also appears in other continuous OV functions.

Hayakawa and Nakanishi [26] derived kink solitons of their model using a weakly
nonlinear analysis, which agrees very well with their numerical data, but the density
in- and outside the cluster could not be obtained analytically, and one has to know
them beforehand to calculate the kink solutions.

More nonlinear features are bound to appear if one considers multi-species traffic in

a car-following model, as mentioned in chapter 5.

2.2.3 The Bando Model

As already mentioned, the calculations in this dissertation are mainly built on the

Bando model,
n(t) = a[Vp(bn) — val, (2.2.30)

first introduced in 1995 [8]. It represents the first car-following model to incorporate
arelaxation term, and resembles earlier proposed continuum models such as Payne’s,
Kiithne’s and Kerner-Konhéauser’s. Their solutions are similar to the predictions of
the Bando model and supported by some numerical simulations, it is one major goal

of this dissertation to show that the two types can be linked analytically.
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Bando et al introduced the dimensionless optimal-velocity function
VB(b) = tanh(b — 2) — tanh(-2), (2.2.31)

which corresponds to ideal vehicles of length zero, and this is what we will concen-
trate on in the following. This generic model was derived from real data, which

originally led them to define
VB(b) = max {0, 16.8 [tanh(0.086(b — 25m)) + 0.913]} m/s. (2.2.32)

The dimensionless version simplifies calculations and the extraction of analytical
results, while still capturing the generic features of the flow.

Although successful at modelling some data, it is important to mention that this
model has its limitations. Hooper [41] found out that it yields unrealistic acceler-
ations, and he tried to set up a more realistic model by various means: limitation
of the acceleration and deceleration which leads to crashes; the more successful ap-
proach of a double-look-ahead model in which a driver also reacts to cars further
ahead; and last but not least, introduction of explicit time delay 7. In accordance
with Bando et al [6], he concludes that a small delay does not affect the physics
notably, whereas a larger delay leads to the unphysical state of backwards moving
vehicles. Hence, the variables 7 and a have to be chosen very carefully in order to
make the model realistic.

The Bando model is, nevertheless, of great interest, since it is the only model that
contains an OV function like the continuum models mentioned above. In addition,
it reproduces more features of traffic flow than any other car-following model. It
is, therefore, the most suitable candidate to investigate the differences and
similarities between the discrete and the continuum formulation. This is
what we will concentrate on in chapters 3 to 6, where several one-lane flow systems

are considered using this model.3

2.2.4 Multi-lane, On- and Off-ramp Simulations

So far the discussion has treated the road as a single lane or averaged over the
lanes. However, there are important effects which occur in multi-lane flow due to
the diffusion of the flow between different lanes [40]. Another interesting example is
the role of on- and off-ramps, and these are discussed in chapter 6. For completeness,

we present a summary of the basic modelling of such systems.

3 A final note on car-following models: there have been only a few attempts to describe traffic in
terms of a mechanical system of particles whose interaction is given by a potential ®n (21, 2, ..., ZN).
The reason is that, “a car is an anisotropic particle that mostly responds to frontal stimuli”[17].
Therefore, the potential would be anisotropic, which means that the overall momentum is not a
conserved quantity any longer, and the Lagrange formalism for non-dissipative systems does not
apply.
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The main problem of the modelling of multi-lane motorways is the lane-changing al-
gorithm and the simulation of on- and off-ramps. They are both highly random and
spontaneous processes, and difficult to integrate into any traffic model (continuum,
car-following, CA, etc). On the other hand, the most important aspect of gaining
high capacities is the distribution of traffic among the lanes. The European motor-
way code restricts overtaking to certain lanes which, according to recent simulations,
seems to be a major disadvantage and results in inadequate lane usage compared to
American highways [4].

Moreover, these processes are very similar, because an on-ramp can be regarded as
a local lane-changing onto a lane, and correspondingly an off-ramp as the local de-
parture from a lane. Since we will simulate an on-ramp in chapter 6, some remarks
on multi-lane and ramp simulations to date are presented in the following.
Multi-lane simulations have been carried out mainly in continuum models. In
1971 Munjal and Pipes [63] published a paper on density perturbations between
two- and three-lane highways. It was based on Lighthill and Whitham’s continuum
formulation, and considered small fluctuations around equilibrium solutions for non-
uniform distributions along each lane, under the assumption of a linear lane-changing
behaviour. This first-order analysis couples the lanes by adding a term to the right

hand side of the equation of each lane,

Ku+aKy, = a[K,— Ky, (2.2.33)

Ko+ c2Koy alK, — K. (2.2.34)

Here, Ki(z,t) and Ky(z,t) are the deviations of the densities from their corre-
sponding equilibrium values K ;0) and K2(0), which might well be different, and so
the velocities of wave propagation are
_ 0y

Oki |, =k ©

¢ i=1,2. (2.2.35)
The authors derived analytical solutions for a uniform freeway (K fo) =K 2(0), c1 = ca,
g1 = q2), and simulated the spreading of an on-ramp flow across the lanes of the
downstream highway for two and for three lanes.

This analysis was extended to a non-uniform highway of different equilibrium val-
ues of the corresponding lanes by Holland and Woods [39, 40]. However, the linear
analysis is not sufficient if larger deviations of the densities from their equilibrium
solutions are considered. In general, the wave speed is a function of the density
¢i = ¢i(k;), and the system of partial differential equations (2.2.33)-(2.2.34) is non-
linear.

Mason [60] studied travelling wave solutions of the full nonlinear system for arbitrary
individual lane characteristics. Smooth travelling waves and shock waves appear in

the system, as well as dispersive waves, depending on the initial conditions. The
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first are a balance between nonlinear wave-steepening effects in a single lane and the
dispersive “wave-spreading” of coupled lanes.

Recent models based on the Kerner-Konhduser model are much more complicated.
Lee et al [76] proposed that the lane-changing should be asymmetric with respect to
the lanes, and moreover that the difference in speed between the two lanes should
decrease with density. These assumptions seem to be very reasonable for European
motorways, but do not apply to American highways.

It is rather surprising that to date, no continuum model contains an explicit depen-
dency of the lane-changing terms on the velocities of both lanes. It is well known
that drivers tend to change lane if the adjacent lane is as dense as their own one,
but contains faster cars. This is obviously not possible in the Lighthill-Whitham
formulation, which assumes that cars adjust their speed instantaneously to the cor-
responding density. On the other hand, this phenomenon is observed in real traffic,
and it is another hint that inertia should be incorporated in the model.

This is naturally the case for car-following models. Helbing and Huberman have re-
cently published a Bando-type model that simulates lane-changing [34]. The crucial
difference from the continuum formulation is the discretization of the lane-changing
algorithm. It is usually a highly nonlinear and random process that makes analyt-
ical approaches very difficult. A vehicle is supposed to change lanes if it can travel
faster on the adjacent lane, and if several safety criteria such as the distance to the
preceding and following car of the neighbouring lane, the difference in speed, etc,
are fulfilled. This leads to various update steps, which make the numerical effort far
bigger than in the case of a single lane. Nevertheless, different vehicles such as cars
and lorries can be mixed, which might reveal new effects in multi-lane traffic flow.
One example is that the authors discovered a coherent state of vehicle motion which
they refer to as synchronized traffic.

There are also cellular automaton models for the simulation of multi-lane traffic
flow, such as Wagner’s [4]. According to the author, it is still unclear whether they
describe the full range of density regimes properly.

So far, on-ramp simulations have been carried out mainly in continuum models.
This process is rather easy to implement by adding a source term to the right hand

side of the equation for the conservation of cars,

pt + (pV)z = Gramp- (2.2.36)

The evolution of the system is then determined by the initial conditions and the
ramp flux gremp(z, t).

The advantage of this approach is that the source term is continuous, both in space
and time. Hence, no discrete process perturbs the continuity of the model, and huge
gradients (section 3.2) in the density distribution near the on-ramp can be avoided.

Moreover, grqmp can be fitted to motorway data representing the time dependent
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flux of on-ramps.

The occurrence of various traffic states near ramps is part of much current work. Lee
et al [56] recently simulated on- and off-ramps on a single lane, and interpreted one
traffic state as synchronized. Their results have consequences for traffic controlling:
motorway flow might be kept stable by controlled on-ramps.

However, the literature provides very little information about on-ramp simulations
in car-following models. One reason might be that entering a lane now becomes
a discrete process both in space and time, which makes it very difficult to extract
analytical results from the corresponding equation of motion.

Nevertheless, car-following as well as CA models are very suitable to incorporate
stochasticity. Time series extracted from on-ramp data can be directly fed into
the system. In addition, it is likely that entering a lane via an on-ramp has to be
considered as a discrete process in order to explain phase transitions in their vicinity,
since the critical amplitude of those transitions (Fig. 2.4) might well be different for

car-following and continuum models.

As we can see, a vital question is how to incorporate lane-changing or on- and
off-ramps on motorways. Continuum models tend to couple lanes by deterministic
cross terms which depend on the density and the speed in the corresponding lanes.
However, a stochastic, and hence more realistic, approach can only be realized in
discrete models like the car-following or CA models. An algorithm in accordance
with traffic data and driver behaviour is still not available and very little research
on this topic has been done to date. We will come back to this problem in chapter
6.
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Chapter 3

Continuum Approach to

Car-following Models

In this chapter, a continuum version of the car-following Bando model [8] is de-
veloped using a series expansion of the headway in terms of density. This new
continuum model obeys the same stability criterion as its discrete counterpart. To
compare both types, it is shown that travelling wave solutions of the Bando model
in the stable regime [11, 15] are very similar to those of the continuum counterpart
in the limit of small changes of headway, and gradually diverge as the change of
headway across the wave increases. The transformation relating headway to den-
sity enables predictions of the global impact and characteristics of any car-following
model to be made by using the continuum analogue. However, chapter 4 shows
that even simple differential delay equations, which describe various car-following
models, lead to very complex equivalent continuum models and, thus, are easier to
simulate in the original, discrete version.

After that, the inverse transformation, giving the density in terms of the head-
way, is derived, which allows us to obtain analogous discrete counterparts of various
continuum models. Here, the problem lies in the interpretation of discrete spatial

gradients, which occur in the corresponding car-following model.

3.1 The Need to relate Car-following and

Continuum Models

The purpose of this chapter is to develop a systematic method for linking car-
following and continuum models of road traffic. The relation between the two models
is of interest since they provide different pictures of the flow, which should converge

in the appropriate limit.
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3.1. The Need to relate Car-following and Continuum Models

Continuum models give an overview of the global traffic flow, which is important for
developing insight into traffic quantities such as throughput, density distributions
or the onset of jams, without detailed regard to the properties of each car. They can
illustrate the effects of speed control systems along the road and allow for analytical
calculations. Continuum models also differ from car-following models with regard to
numerical simulations, because one has to deal with two coupled partial differential
equations, instead of a few hundred or even thousands of ordinary differential equa-
tions corresponding to the number of cars on the road. Which procedure is more
costly depends on the problem.

However, car-following models represent the only class of models which describes
each vehicle in a deterministic manner, including the response to local variables
such as speed, headway and change of headway. Therefore, they seem to be of great
importance when it comes to autonomous cruise control systems (ACCS), which
should stabilize and maximize the flow.

In this chapter, we follow the Bando model [8] of road traffic
Un = a[VB(by) — vp] (3.1.1)
with the optimal-velocity function
Vi (b,) = tanh(b, — 2) + tanh(2), (3.1.2)

shown in Fig. 3.1. Since this model is able to reproduce various features of road
traffic (see chapter 2), it is the subject of much current research [6, 26, 69].

By developing a formal asymptotic procedure, we derive the continuum approxi-
mation to the car-following model, which is valid when the spacing between cars is
small, relative to the length scale of changes in speed and headway. We then compare
this with the continuum model of Kerner and Konhduser (K.-K.) [48] (subsection
2.2.1) which incorporates effects of inertia and dispersion, and is able to describe

the formation of instabilities and traffic jams:

Vi _
Vg 4+ VVg = % — cgp?m + uv% (3.1.3)

with an optimal-velocity function Vi (p) that is discussed in greater detail in section
3.5. Here, the coefficients ¢ of the pressure and p of the wiscosity (dissipative) term

are considered to be constant. This is closed as usual by the conservation of cars
pt+ (pv)z = 0. (3.1.4)

In discussions [4] of the derivation of the higher order terms, it appears that the
dissipative term was originally introduced as a means of stopping steepening waves
from forming discontinuous shocks. Nagel [67] explained it as an averaging effect

caused by implicit random fluctuations in p and v. It has been argued that these
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Chapter 3: Continuum Approach to Car-following Models

VB

Figure 3.1: The monotonic increasing optimal-velocity function Vg(b,,) of the Bando model
with top speed Vg (b, — o0) =~ 1.964.

noise terms are important, since they can have a profound effect on solutions of

certain partial differential equations. For instance, Burger’s equation
U + Uy = AUgg (3.1.5)

has well-known travelling N-wave solutions, which cease to exist if Gaussian noise
is added to the right-hand side.
Here, rather than these heuristically motivated continuum models, we aim to derive
an asymptotic equation analogous to Eq. (3.1.3) from the car-following model (3.1.1).
We, thus, establish that such diffusive behaviour is an implicit part of the car-
following model.
In the case of a homogenous stationary flow, all time and space derivatives vanish,
and for the car-following model we then obtain the relation between speed vg and
headway bg (section 2.1)

vo = VB (bo), (3.1.6)

while from the continuum model we have
vo = Virk(po)- (3.1.7)

For such uniform flow conditions, the density is simply given by the inverse of the
headway

and one can compare the two types of models by drawing their fundamental diagrams
q0(po) = povo = poVa(1/po) (3.1.9)
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3.2. The Transformation; Continuum Version of the Bando Model

and
qo(po) = poVk K (po), (3.1.10)

respectively. In non-homogenous non-stationary situations, however, the car-following
and continuum models can only be compared by stability analysis and numerical sim-
ulations. It is hard to say which terms or effects are responsible for the difference in
the simulations, but we can show that the relation between headway and density is
of great importance. When there are long range fluctuations in the headway or the
density along the road, Eq. (3.1.8) is only a first-order approximation. In the next
section, we introduce a more accurate method to relate these variables.

3.2 The Transformation;

Continuum Version of the Bando Model

I The difficulty of relating car-following and continuum models of road traffic is in
part a result of the fact that the first are based on the headway, and the latter on
the vehicle density. It is therefore important to relate these two quantities correctly.
In the literature, the density p is usually defined as the inverse of the headway
Eq. (3.1.8). However, there is a problem with this definition. For example, suppose
we have a set of cars positioned at x = 1,2,4,8,... . The car at position x has
headway b = z. Using the formula (3.1.8), we obtain p = 1/z, which is extended to
the continuum domain by permitting x to take any positive real value. According
to this, the number of cars on the open interval (1,y) is Iny. However, the actual
answer is logy y and, so, we are consistently wrong by a factor of In 2.

We deduce that for non-homogenous flow situations, we cannot transform the car-
following model by simply using relation (3.1.8). We need a consistent way to set
up a map

{zi} = [p: R~ R], (3.2.1)

where the set {z;} represents the positions of the vehicles at a given instant in time,
and p(x) is the associated density function from which we should be able to find the

positions of the vehicles. One approach is to require that
Tit1
/ p(x)dx =1 (3.2.2)
i

for all 4. Thus, in addition to our density function, we require the position of car one.
Given only the condition Eq. (3.2.2), map (3.2.1) is not unique, but its inverse is.
However, it is the inverse map that we require in constructing a continuum equation

of motion from a car-following law. We use the definition of the headway b = z;,1—2;

!This section contains original work by Mason [60], which was also used in a publication by
Berg, Mason and Woods [11].
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to arrive at an equation involving the continuum variable p by extending Eq. (3.2.2)

formally to all points along the road

z+b(z,t) b(z,t)
/ p(z,t)dx' = / plz +y,t)dy = 1. (3.2.3)
T 0

Expanding the second integral in powers of y

b(mvt) 1
/0 [p(a:,t) + pz(z,t)y + Epm(m,t)yf +...| dy, (3.2.4)

we integrate to obtain the asymptotic series [60]

1
§b2pa: +

1

3|b3pm + =1, (3.2.5)

bp +

where the first term corresponds to the common definition of the density Eq. (3.1.8).
We expand the series to this order for two reasons. First, we would like to obtain a
continuum model that is capable of describing some characteristic traffic parameters
mentioned by Kerner and Konh&user [48]. They showed that a dissipative term
has to be incorporated to do so. Secondly, these higher order terms are needed to
maintain the same stability criterion for the continuum model as for the car-following
model, demonstrated in the next section.

When we truncate the series (3.2.5), it is assumed that each term is of smaller
magnitude than the preceding one. This assumption is at the core of continuum
approximations of many kinds, and can be summarized by the condition

Ay
= _x <1 (3.2.6)

for all scalar quantities A associated with traffic. It amounts to saying that changes
in the flow occur over a length scale of many vehicles.
If we consider the cubic term to be much smaller than the linear and quadratic term,

we can first solve the quadratic equation for b

1
bp + §b2pm =1, (3.2.7)
obtaining
1 Pz
N — . 2.
b > 2,8 (3.2.8)

Regarding the cubic term as a perturbation, we expand b in a perturbation series

1 Pz . 1 Pz
b=-—_—"—=+c¢€ , with |e|<<‘———, 3.2.9
p 2p p  2p3 (3.29)
and approximate the solution as
1 P P2 Pzz
b~ - — = —Z _ =], 2.1
p 25 (2p5 6 (3.210)
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3.2. The Transformation; Continuum Version of the Bando Model

The first term represents the classic transformation for relating the headway and
the density, and the second term is similar to a pressure term in gas kinetics and
acts to destabilize the traffic flow. If we retain only this term, we end up with a
continuum model similar to Payne’s. The diffusive term p,, smoothes variations
in traffic density and has a stabilizing effect on traffic flow, which counteracts the
pressure term. We therefore retain terms up to this order.

Equation (3.2.10) can be substituted into car-following models to yield equations for
p instead of b.

So far, we have established a link between the continuum density and the headway.
The other quantity relevant to both continuum and car-following models is the
speed v. In order to link the two models consistently, we need to establish that v
is now consistent with the quantity representing the speed of each vehicle in the
car-following models.

Taking a total time derivative of each side of Eq. (3.2.3), we obtain

z+b
/ " o)y + (2 + ) p(z + b) — zep(a) (3.2.11)

z+b
[ oy + ot + Dt + ) — v (3:2.12)
x+b
[ o) + (ot iy (3:2.19)
=0, (3.2.14)

where b(z) and all other quantities are evaluated at time ¢. Hence, the conservation
equation (3.1.4) guarantees that the integral of density along the road from any
vehicle to the one it is following is one. In this sense, the definition of velocity v is
consistent.

Applying our analysis to the second-order model of Bando et al in Eq. (3.1.1), we
obtain the expression for the conservation of cars Eq. (3.1.4), coupled with the

approximation of the car-following model in terms of a Taylor expansion to first

order
_ 1 Pz ,0% Pzz
v v, = a {VB <,0 203 + 205 6yt v (3.2.15)
2
= = Pz Pzz Pz
~ - Po y Loz Pz 2.1
a[V(p) —v] +aV'(p) [2/) + 67 2p3] (3.2.16)
Here we set
V(p) =Vs(1/p), (3.2.17)
oVg(b) 20V (p) 95
0< = —p'—= = —p°V . 3.2.18
b oy, 'y P V'(p) ( )
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Chapter 3: Continuum Approach to Car-following Models

Equation (3.2.16) is analogous to the Kerner-Konhiuser model Eq. (3.1.3). However,
an important difference between their model and the new model lies in the coeffi-
cients of the higher order terms. In contrast to their heuristic model, in which the
coefficients are assumed to be constant, Eq. (3.2.16) reveals a dependence on p: for
example, c% is now analogous to the term —%. By comparison with the discrete
Bando model, numerical simulations show that the dependence of these coefficients
on the density p is necessary to match the length scale and qualitative behaviour of
travelling wave solutions (sections 3.4 and 3.5). The accuracy increases with further
terms of the asymptotic series Eq. (3.2.10).

As already mentioned, Nagel [67] argues that the dissipative term can be regarded
in terms of stochasticity added as a high-frequency correction to density, which is
supposed to vary slowly in space and time. However, our analysis reveals that the
transformation from a car-following to a continuum model also produces a diffusive

or smoothing effect, without the need to introduce any explicit stochasticity.

3.3 Stability Analysis

Before proceeding with numerical calculations, we first show that the continuum
version of the Bando model Eq. (3.2.16) obeys the same stability criterion as its
discrete counterpart. Bando et al [8] proved that an initial homogenous flow of

headway by is unstable if the inequality

2V5 (bo)

1 3.3.1
20 (33.1)

is satisfied. This relates the drivers’ sensitivity a to the derivative of the OV function
Vi at po = 1/by. The analogous criterion for the continuum model may be found
by linearizing the model

pt+ (pv)z =0, (3.3.2)

- N . P
v+ vy = a [V(p) —v] +aV'(p) {ﬁ + == — —zg] (3.3.3)
around some initial values pg and vg = V (po)

p = po+p (3.3.4)
v = wo+ 0. (3.3.5)

This leads to the perturbation equations

Pt + poUz + vopz = 0, (3.3.6)
By + vode = a [V'(po)p — 9] + aV’(po) {ﬁ—w + ﬁ_;c:;] . (3.3.7)
2p0  6pg
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3.3. Stability Analysis

We now calculate the eigenvalues w(k) of a harmonic disturbance of the form

Flz,t) = ( A(z,?) ) - ( 2"; >exp{i[km—w(k)t]}, (3.3.8)

(1)

<

so that we can rewrite the equations as

i(kvo — w) 1kpo Po )
< a7 — iUk al'R i(kvo — ) + . exp {i [kz — w(k)t]} = 0.

200 T 602 vo
(3.3.9)
This equation has non-trivial solutions if the determinant vanishes,
i(kvo — w) ikpo
_ e 2 =0. (3.3.10)
‘ —aV' — z—%‘;ok + agpéc i(kvo —w) +a

As long as the imaginary part of w is negative, the system is stable. Solutions have

the form
a 2V i
= — = - 2 _ 4 I3
wi,2(k) = kvo 05 1+ \/1 + . <k i2pok + 3p0k )] , (3.3.11)
and by defining
2 x 7/ . 1/2
Q(k) == Re {1 42V (k2 — i2p0k + Lk‘?’)} : (3.3.12)
a 3p0

the criterion is equivalent to |[Q(k)| < 1. By writing

_ _ _ 1/4
27" )\ 2 4V'p W 4\’
(3.3.13)
= [JV4 7”1:;03‘;5 (3.3.14)
where [...] denotes the square bracket in Eq. (3.3.13) and
2V’ '

¢ = arg [1 +5 (k2 — 200k + 3%0193)] , (3.3.15)

it may be seen that the condition Im(w) < 0 is equivalent to

1 1+ (2V'/a)k?

YA — 1+ 1+ @V/ak: (3.3.16)

V2 [..]Y/2

In order to solve this inequality, we restrict k to be non-negative, since |Q2(k)| is

symmetric. Solving |[Q2(k)| = 1 leads to three solutions,

3 2V’
ko=0 , ki:\/(}p%:l: ;’f"\/— . (3.3.17)
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Recall V! < 0 from Eq. (3.2.18). This implies that k_ is always real, whereas k.
may be either real or complex. Since we know that |ki| < k_, 2(0) =1 and

Q(k) =3 —o0, (3.3.18)

we can deduce from the continuity of (k) that Q(k_) = —1. So for k > k_ the
model is unstable, but since this corresponds to disturbances which are smaller than
the initial headway, we do not take this case into further consideration. However, if
k4 is real, there is a region 0 < k < k4 of instability (k) > 1 with respect to long

wavelengths. In contrast, if k4 ¢ R, which means

3apg 2V
6% + =1/ —— <0, 3.3.19
PO+ V! a ( )

the system is stable. Taking V} = —p%V’ into account, this reduces to

a
2V,

> 1, (3.3.20)

which is exactly the stability criterion found by Bando et al (cf. Eq. (3.3.1)). Ac-
cordingly, the continuum model is unstable in a regime 0 < pfl <p< pg too, such

that
a

— = <
2 Vg(1/p)
A stability analysis for the Kerner-Konhauser model leads to a criterion similar to
Eq. (3.3.13). Now, the system is stable if

1. (3.3.21)

. 1/2
idpoaVi ik — 4p2cik?
Q k)| = |Re |l 2 1 3.3.22
e ()] = | Re |1+ O RE <1 @3
is satisfied. Taking the limits
20(2] 9
E—=0: |QFk)kx|l—1- ?k -1, (3.3.23)
4 2.2
k—oo: QK| — /11— M’;"]:; 1, (3.3.24)

shows that the model is stable for any initial value pg of the density and arbitrary
sensitivity a = 1/T with respect to short and long range disturbances, unlike the con-
tinuum analogue of the Bando model. Moreover, for the set of parameters (3.5.10)-
(3.5.16), the model is linearly unstable in a range p > pX¥ which is different from
the intermediate range of the Bando model
pg <p< pf;. This reveals another basic difference between these two continuum

models.

We have shown that the continuum version satisfies the same stability criterion as

the original discrete model. However, one could argue that this is shear coincidence
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0.8

k
Figure 3.2: The function (k) for two different values of the sensitivity a.

because we truncated the asymptotic series (3.2.5) after three terms, and that further
terms in (3.2.10) might spoil the equivalence of the stability.

The answer lies in the prerequisite that we have used to derive our model. We have
assumed that each term in the asymptotic series Eq. (3.2.5) is small compared to

the preceding order. For the first two terms this is equivalent to

b2
3 Pz sz b
_— = || = | = l T 1’ . .2
22| |52 = |30m 0| < (3:3.25)
and likewise for the third and second terms
b
g(lnpz)z < 1. (3326)

In general, the criterion for a sufficiently fast convergent series is

% {ln _<%>n_2 p] } < 1. (3.3.27)
If we consider a Fourier component of the density
p(z,t) ~ exp [i(kz — wt)], (3.3.28)
(3.3.27) is equivalent to
‘% < 1. (3.3.29)
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This means that the variation of the density should take place on a long wavelength
of the order of several headways.

The car-following model is most unstable for b = 2, which leaves us in the case
n = 2 with |k| < 1. Ounly in this regime can we expect the models to be equivalent.
For large k, the prerequisite is not fulfilled and the models are no longer equivalent.
They may therefore show different behaviour, which could be tested by a comparison
between numerical simulations of the continuum and the discrete model: a short
wavelength perturbation should only grow in the continuum model.

Figure 3.2 shows Q(k) for two different sensitivities. It becomes clear that the
instability |Q(k)| > 1 first occurs for a = 2.0 near k = 0. In this region, the lowest
order terms in (3.3.12) dominate and, hence, further terms of higher order do not
affect the stability. They only begin to play an important role for increasing values
of k, where (3.3.29) is not fulfilled.

3.4 Comparison of Travelling Wave

Solutions

So far, we only know that the models (3.1.1) and (3.2.16) have the same equilibrium
flow-density curve and the same stability criterion. Here, linear terms have domi-
nated the analysis since large gradients are neglected. Therefore, we have to look
at the dynamics of the models in order to draw conclusions about their equivalence.
One can only talk about analogous models if they produce similar results.

To further support our ideas, and to test the accuracy of our model, we compare
some travelling wave solutions of the car-following Bando model in the stable regime
[15] with those of the continuum version (see also chapter 5 for greater details of
travelling wave solutions). By a travelling wave, we mean a density profile that
travels up- or downstream on the highway without changing its shape. By choosing
this wave type, the coupled partial differential equations of the continuum model re-
duce to one ordinary differential equation, which makes numerical simulations much
easier.

If we move with a wave of speed ¢, we can transform the variables speed and density

by a coordinate transformation

z=x—ct (3.4.1)

into
v(z,t) = v(z—ct) = v(z), (3.4.2)
p(z,t) = plx—ct) = p(z). (3.4.3)
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Figure 3.3: Initial change of headway in the Bando model, ¢t = 0. The initial speed of the
vehicles is given by v, (0) = Vp(b,(0)). Our special choice of Heaviside initial data is further
discussed in chapter 5.

The equation (3.1.4) for the conservation of cars then reads

—cpy+q, =0, (3.4.4)
and can be integrated to yield

p(v —c) = qo. (3.4.5)

The parameter ¢o is some integration constant, which is determined
by the boundary conditions p_o = p(z — —0), pe = plz — ),

Voo = V(x = —00) and vy, = v(x — 00) as follows

W0 = Poo(Veo — )
= Poo [V(POO) - C]
= p—oo('U—oo - C)

= P-oo [V(p—oo) - c] .

Egs. (3.4.6) - (3.4.9) reveal that the wave speed ¢ has the value

_ PV (poo) = pooV (P—co) (3.4.10)

C ’
Poo — P—oo

and so both the variables gp and ¢ are uniquely determined by the values of p at

+00. Moreover, we can see that if a travelling wave between two uniform flows of
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Figure 3.4: The wave profile of the Bando model approaching the travelling wave solution
of the continuum model in the moving frame Eq. (3.4.1). Here as in what follows, we shift
the origin of the solutions for reasons of comparison.

densitiy p_~ and peo exists, then it moves with a speed that equals the gradient of
the chord between these two densities in the fundamental diagram.
If we substitute these relations into our model equation (3.2.16) and make the trans-

formation

u(z) =v(z) — ¢, (3.4.11)

we obtain the equation for the speed of cars u in the frame moving with the wave

_ — Uy,  Uyy 2ug

uu, = a [V(go/u) —u—c| —aV'(go/u) <% + 620 + 3q0u) , (3.4.12)
which can be integrated numerically using a shooting method (appendix D). Unless
stated otherwise, throughout the remaining parts of this dissertation, we assume
a = 2.0 in order to be in the linear stable regime, the results of which are discussed
in the moving frame Eq. (3.4.11).
Figure 3.4 shows how the wave that develops from the initial condition Fig. 3.3
evolves towards the wave solution of the continuum model Eq. (3.4.12).2 As the
initial jump in headway increases, the wave develops an oscillatory tail (Fig. 3.5),

and because of the increasing of headway gradients, the solution governed by the

2Where it appears more suitable, we present the figures of the car-following simulations with lines
rather than with dots representing each car, in order to simplify the comparisons with travelling
wave solutions.
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Figure 3.5: The change of headway at ¢ = 1000 for an initial jump from b_ = 3.0 to
by = 1.8.

continuum model begins to diverge from its discrete car-following counterpart. How-
ever, the length scale and the oscillatory characteristic of the wave are still described
properly.

If the downstream headway in the car-following model is decreased below some crit-
ical value b..;;, an unusual type of nonlinear wave solution develops [15]. It consists
of two travelling waves of different speed (Fig. 3.6), separated by a growing region of
congested traffic of density py,. We may call the upstream wave a Bando wave?: it
also occurs in the numerical simulation of the continuum model when the integration
breaks down. However, given py,,, which can here only be determined numerically,
we can calculate travelling wave solutions in the analogous continuum model for
both up- and downstream waves. They may be matched to describe the new wave
type, if one knows the long-time behaviour of the gap width. We assume that in this
limit, the gap will increase at a constant rate vg4qp, which can be calculated from the

continuum model according to
Vgap = Cdown — Cup- (3.4.13)

Here c4own and cyp represent the downstream and the upstream wave velocity, re-

spectively, and both parameters can be obtained following Eq. (3.4.10)

14 — oV
Cupdon = 22V (Pzo0) = PV (Piw) (3.4.14)
Ptoo — Pow

3More details of this wave type are presented in chapter 5.
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Figure 3.6: Formation of a Bando wave (upstream structure) and a second travelling wave
(downstream structure) for initial conditions b_o, = 3.0 and bo, = 1.7. The waves move
with different upstream speeds so that a growing region of congested traffic forms. Note
that the wave profiles for different ¢ have been shifted upstream for reasons of comparison.

Then the gap width dgqep has the long-time behaviour
dgap = Ugap(t - tinitial) y > ingtial (3415)

where t;,;t:q 1S the time-offset associated with the development of the waves. Once
more, it can only be estimated by numerical solutions of the car-following model,
and comparison (Figs. 3.6 and 3.7) suggests that t;,;sa ~ —189.78. For the set of

parameters

b o = 3.0, (3.4.16)
b = 1.7, (3.4.17)

we find the gap headway from the numerical data to be

1
byw = —— A~ 1.303 (3.4.18)
Pbw

and the gap speed from Eq. (3.4.13) as
Vgap = —0.6597 — (—6858) = 0.0261. (3.4.19)

This corresponds very well to the slope of the curve in Fig. 3.7.

We are now able to compare the Bando wave and the two individual travelling wave
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solutions of the continuum model in the same graph (Fig. 3.8), which shows very
good agreement. Even the oscillatory overshoot of the downstream front, before
adopting the equilibrium headway, is matched accurately.

The Bando wave solution, including this oscillatory behaviour of the tail, was also
found by Kerner and Konhduser [48], but one needs the correct corresponding co-
efficients of the anticipation and dissipation term to reproduce the results of the

car-following model accurately.

We conclude that our continuum model Eq. (3.2.16) is a very good approximation
to the discrete car-following Bando model Eq. (3.1.1), and that the accuracy may

increase with the number of terms retained in the asymptotic series (3.2.5).

3.5 Comparison with the Kerner-
Konhauser Model

Now, we further support the idea that the transformation (3.2.10) is crucial in order
that the continuum model is qualitatively analogous to the underlying car-following
model by using dimensional models. To this end we compare predictions of our new
model with those of the Kerner-Konh&user model Eq. (3.1.3) and the corresponding
car-following model.

Herrmann and Kerner [38] investigated the similarities between their continuum
model and a car-following model that is also based on a relaxation term. They
considered cluster effects in greater detail in both models by examining traffic jams

in a Bando type model
. 15
=7 [Vik (br) — vn] (3.5.1)

and comparing the predictions with their own continuum model Egs. (3.1.3) and
(3.1.4). In both cases they chose the same OV function

A\ —1
Vik(p) = vo <1 + exp M) — d] (3.5.2)

with )
1—pi/p\~
d= <1 +exp 7”/”) (3.5.3)
g

and
Vik(b) = Vir(1/0). (3.5.4)

The top speed of cars is defined as vy := Vj;(0), and they come to a standstill in
a jam of density p = 180veh./km. The parameters of the car-following model are
fitted so that in their simulations, both models show the same stationary stop-and-

go jams moving on a circular road, which gives the following parameters for the
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Figure 3.9: The monotonic decreasing optimal-velocity function of the Kerner-Konhiuser
model.

discrete model

T = 0.985s (3.5.5)
p = 180veh./km (3.5.6)
vy = 100.8km/h (3.5.7)
pi = 36.5veh./km (3.5.8)
o = 0.02875, (3.5.9)

whereas the parameters of the continuum model are based on traffic data

T = b5s ( )
co = 39.88km/h (3.5.11)
p = 210veh.km/h ( )
p = 180veh./km (3.5.13)
vj = 100.8km/h (3.5.14)
pi = 42.7veh./km ( )
o = 0.04. ( )

For unstable flow, these two models may seem to describe the same qualitative type
of moving structures, as such. However, if we examine the stable regime, we find

that these models are actually not equivalent.
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Figure 3.10: Comparison of travelling waves in the Bando model Eq. (3.5.1), the analogous
continuum model Eq. (3.4.12), and the Kerner-Konh&user (K.-K.) model Eq. (3.5.17) in the
stable region for the same optimal-velocity (OV) function.

The calculations are carried out by substituting Eqgs. (3.4.4) and (3.4.5) into Eq. (3.1.3)

to obtain the travelling wave equation analogous to Eq. (3.4.12)

1 2
wiy = — (Vir(qo/u) —u—c) + c%u— + B, (3.5.17)
T u Qo

For comparison, Fig. 3.10 shows that the Kerner-Konhauser model fails to match the
length scale of a jump in headway of a travelling wave predicted by the car-following
model Eq. (3.5.1). Even for the same driver reaction time 7" = 0.985s, the model
predicts a much more extensive region of adjustment in order for the headway to
decrease to b = 40m.

We now compare solutions of the ordinary differential equation (3.5.17), and the
car-following model (3.5.1) to those of our continuum model (3.4.12), with an OV
function (3.5.4) and parameters as in Egs. (3.5.5) - (3.5.9). Our model predicts
oscillatory behaviour, in contrast to the car-following model, but significantly it
predicts the same length scale (Figs. 3.10 and 3.11). This arises from the dependency
of the coefficients of the higher order terms on the density Eq. (3.2.16) or the velocity,
respectively. If higher order terms are retained in the transformation, it will show
the same qualitative behaviour as the numerical solution with no oscillations, but
a monotonic rapid transition from the upstream to the downstream headway. It
is, therefore, the appropriate continuum analogue. We expect that the car-following

analogue of the K.-K. model must contain additional terms, apart from the relaxation
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Figure 3.11: Comparison of travelling waves in the Bando model Eq. (3.5.1), and the
analogous continuum model Eq. (3.4.12).

term, to match its different length scale behaviour (section 4.2).

The dependency of the coefficients on the density does not occur in conventional
continuum models, but it could well be an intrinsic feature of a differential delay
equation as recently proposed by Nagatani [64, 65|]. In order to derive a modi-
fied Kortweg-de Vries equation (MKdV) for the jamming transition in a continuum
model, he used a simplified version of the Kerner-Konh&user model

(pv)t = alpoVN(p(z + 1)) — pv] (3.5.18)

with the OV function Vi (p) = Vp(1/p) of the Bando model Eq. (3.1.2). He simplifies
it in the sense that he drops the pressure, convective and dissipative terms of the
original model. On the other hand, the anticipation is now incorporated in a non-
local term p(z+1). In this dimensionless model, the average headway by is supposed
to be of order one (bg = 1/pg = 1), and the idea is that a driver adjusts his velocity
according to the observed headway b(z) = 1/p(z + 1). Even though this is not the
correct relation between headway and density as shown above, we proceed to derive
the corresponding ordinary differential equation for the travelling waves.

Nagatani couples the dynamic equation to a continuity equation of the form

pt + po(pv)e = 0. (3.5.19)

In case of a travelling wave, the transformations Egs. (3.4.2) - (3.4.4) enable Eq. (3.5.19)
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to be integrated to give
p(pov — ¢) = qo. (3.5.20)

Substituting this relation into Eq. (3.5.18) yields

2
apg q0 3 a 3 a 9
= Vi - Sw’ — = 3.5.21
Wi ac® N (w(z + 1)) womav Y ( )
with
w = pov — C. (3.5.22)

Since this is a differential delay equation it is not straightforward to compare it to
our model Eq. (3.4.12). In general, a differential delay equation cannot be solved
by a Taylor expansion and its truncation after a certain amount of terms (appendix
C). Nevertheless, if the equations are similar the first terms of the Taylor expansion

should be similar too. If we retain terms up to first order in Vy;

) - () o5 (3)28
- lqu/V( P ) [w‘”(z) —2“’2(2], (3.5.23)

2 w(z) ) | w(z)? w(z)

we obtain a corresponding second order model

2 2
_ apg ( q0 ) ' ( q0 ) Wy Wzz wy, 3
= — |VWwl=)—aVnl—)*|— - =
wWW, 20C [ N\ QVy w w2 + 902  wd w
a 3 a 9
- —w’—-- 3.5.24
20 T v ( )

that differs from our model not only by its expansion terms but, also, by the nonlin-
ear terms aw3/c? and aw?/c. Hence, the class of solutions differs too. Nevertheless,
the expansion Eq. (3.5.24) shows that a dependency of the coefficients of the pres-
sure and diffusive terms on the density is an intrinsic feature of this model, but it is

not analogous to the Bando model.

3.6 Travelling Waves of the Unstable Regime

The correspondence of the travelling wave solutions of both the continuum and the
car-following model cannot be generalized to all values of the sensitivity parameter

a due to instability. The line
sb(b) = 2V5(b) = 2 [1 — tanh?(b — 2)] (3.6.1)

defines a region SB in the headway-sensitivity diagram, in which the model is linearly
unstable (Fig. 3.12). For a > 2, the model is linearly stable and the travelling wave

solutions with the specific initial condition b = 3.0 and by < b_ can be divided into
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Figure 3.12: Travelling waves with upstream b_ = 3 and downstream headway by = bei
become unstable for a < 2 and form clusters with headways given by the curve b.

two regions. In region A, they are linearly stable, unless the downstream value b
hits the critical value b..;; when Bando waves form. This type of wave as described
above occurs in region B. The two travelling waves with a growing region of a specific
headway by, in between are stable.

Keeping the upstream and downstream headway fixed and varying a, the travelling
wave solutions eventually become unstable for sufficiently small values of a. However,
formally we can still obtain solutions from the ODE (3.4.12). b.;; can still be derived
by investigating the downstream headway for which the integration breaks down,
but whether a particular solution is stable or unstable depends on the values of the
headways which are involved. If the upstream and downstream headways are not
part of the region SB and the adjustment does not consist of an oscillatory overshoot
that intersects sb, the solution Eq. (3.4.12) is linearly stable and can be reproduced
by the car-following model with corresponding initial conditions as presented above.
On the other hand, the solution is unstable if these conditions are not fulfilled.
Figure (3.13) shows how an initial jump in headway evolves with time in the car-
following model. After ¢ = 50, the solution is very similar to those of the continuous
counterpart Eq. (3.4.12), but eventually it becomes unstable and the typical cluster
forms. For given a, the solution eventually jumps between two headways whose
values can be read from the graph b, in Fig. 3.12 [39].

Whether travelling waves of the region C, the part of the unstable regime which
corresponds to A, are stable or not, has to be investigated in every single case. If

either the upstream or downstream headway is part of the region SB, the solution is
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Figure 3.13: The travelling wave solution of a modest jump in headway from b_ = 3 to

by = 2.7 in the unstable regime (a = 1.0) cannot be reproduced by the car-following model.
Clusters form.

clearly unstable and develops towards the corresponding cluster solutions of a traffic

jam. For b_ = 3 and by 2 beprit, the solutions turn out to be unstable for all a < 2.

The rich structure of travelling wave solutions is discussed in greater detail in chapter
5.

3.7 Asymptotic Solutions

So far, we have considered travelling wave solutions of the Bando model, its con-
tinuous counterpart and the Kerner-Konhauser model. The first two showed a very
good agreement between a number of different steady traffic situations. However,
it is also of interest to examine the dynamic case of a non-stationary wave solution.
This can be done in certain regimes, because in some special cases the higher order

terms of dynamic equations of the form
Vg + VU = @ [V(p) - v] + O(pz, pzzyPan) (3.7.1)

do not play an important role and can be neglected. The traffic flow is then uniquely
determined by the driver’s sensitivity a and the optimal-velocity function V(p),
combined with the equation for the conservation of cars Eq. (3.1.4).

As an example, one might consider an initial disturbance in the car-following Bando
model Eq. (3.1.1), as in Fig. 3.14. Here, a region of slightly more congested traffic is

inserted in a homogenous flow. As time increases, one ends up with a wave solution
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Figure 3.14: Initial condition: region of slightly higher congested traffic. Again the initial
speed of the vehicles is given by v, (0) = Vp(b,(0)).

shown in Fig. 3.15 (10 solutions for ¢t = 250, 500, ..., 2500): the headway overshoots
the initial disturbance by a shock and eventually readjusts to the original headway;
the jump in headway decreases with time, and a dispersive tail forms. As can be seen
from the graph, there is a stationary point Ky along the road, where all solutions
intersect until the downstream propagating, nonlinear shock front passes this point.
This effect can be explained using a very simple continuum model proposed by
Lighthill and Whitham [58] (subsection 2.2.1), which is based on the conservation
of cars Eq. (3.1.4). By substituting the stationary relation

a(p) =V (p)p (3.7.2)

between the flow and the density for ¢, we obtain
pet+a(p)e = 0 (3.7.3)
=>pe+ [V(p)p], = O. (3.7.4)

This model does not incorporate inertia and describes flow that adjusts rapidly to its
surrounding traffic situation. Using the method of characteristics, it can be shown

that regions of density p travel with speed

c(p) = 6(2—(:) =V(p)+ p_algﬁ)p)7

which is equivalent to the slope of the tangent in the fundamental diagram Fig. 3.16

(3.7.5)

(see subsection 2.2.1 for greater detail). Ky, therefore, simply corresponds to the
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Figure 3.15: The evolution of the pulse Fig. 3.14; ¢ = 250, 500, ..., 2500.

maximum of this curve (pp = 0.36 = by = 2.78), where the speed of the density
wave vanishes.

To explain the other features, we start with the higher order continuum model
Eq. (3.2.16). First, we approximate the wave profile by piecewise linear solutions,
which model a triangle evolving in space and time, as shown by Fig. 3.17 (cf.
Whitham 1974, [84]). For the dispersive tail, one can formally write an asymp-

totic solution (¢t — oco0) as

a A

. x

pa,t) = po+ plz, ) = po+p1og , — <1 (3.7.6)
th Po
7 0

v(z,t) =vo +0(z,t) =vo+viy , — <1 (3.7.7)
t Vo

Two equations have to be balanced: the conservation of cars and the dynamic

equation

2
—alV (o) — V' (p) |22 4 Pez _ Pz
v+ vy = a [V(p) —v] + aV'(p) {2;) + 6,2 2'03] . (3.7.8)

By substituting Eqs. (3.7.6) and (3.7.7) into (3.7.8), it is seen that the relaxation
term a [V (p) — v] dominates all the other terms as t — oo and & — oo, because they

incorporate time and space derivatives. Therefore, this term has to vanish exactly,
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Figure 3.16: Fundamental diagram of the Bando model with significant densities: back-
ground density p_ = 1/b_ = 1/3, maximum of the flow py = 0.36, inflection point p;, = 0.5,
onset of the Bando wave p..;; = 0.58, and the Bando wave pp,,, = 0.77.

leading to
v = V(p), (3.7.9)
a = 7, (3.7.10)
g = o (3.7.11)

Equation (3.7.9) can be substituted into the conservation of cars Eq. (3.7.3), which
leads to Eq. (3.7.4). A Taylor expansion of V(p)p around the maximum pg

V(p)p=(Vp)y+ (Vp)oi+ % (Vp)g* + - (3.7.12)

(dash equals derivative with respect to p), analogous to the asymptotic expansion
Eq. (3.7.6), turns (3.7.4) into

[/ EPUN

Pt + (Vp):) Pz + (Vp)o ppz = 0. (3.7.13)

Near the maximum of the flow, the first derivative vanishes, and a possible balance

can be extracted from

X — n o T
as 1
a=1,8=1 and p; = —— <0. (3.7.15)
(Vo)g
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Figure 3.17: A model for the pulses.
Now the density around the flow maximum becomes
x
plz,t) = po+ Ly (3.7.16)
= 0.36— 0.062 % (3.7.17)
and the velocity
_ 17 Vo), + 2 (Vo) p?
v=V(p) ~ L= (Vo)o + 2 (A PloP (3.7.18)
P pPo+ p
1% 1%
=v(z,t) = ( p)o - 2( —p)O// i (3.7.19)
po p(Vp)y t
x
= 1.61+4+0.28 T (3.7.20)
The headway is given by
b(z,t) = bo+b(z,t) (3.7.21)
1
~ =22 (3.7.22)
po  ppt
= 278+0.48 % (3.7.23)

This corresponds to an increasing velocity and headway, respectively, which is con-

sistent with the graph 3.15. To compare the asymptotic solution Eq. (3.7.23) with
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Figure 3.18: Comparison of the numerical data and the asymptotic solution Eq. (3.7.23).

the numerical data from the car-following model, we place the origin in Fig. 3.15 at
the stationary point Ky, where the pulses intersect and take the data from x = 200.
The dependence on z is obviously linear, but the inverse time relation, as well as the
coefficient p;, have to be checked. Fig. 3.18 shows a very good agreement between
these data sets, so that we can regard the tail as being understood.

What remains is the movement of the shock but, here again, the fundamental dia-
gram gives a qualitative explanation. T'wo successive jumps in headway are drawn

in Fig. 3.17. The shock moves with a velocity

) = 9—0 — q(ps)

3.7.24
P—co — Ps ( )

& = cp(ps

(cf. Eq. (3.4.10)) along the road where p; denotes the highest density of the
pulse. The jump in headway is given by the intersection of the asymptotic solu-
tion Eq. (3.7.17) and the shock front

. ap
by = 5 F e (ps 3.7.25
p p + o cp(ps) ( )

change of tail change of shock front

T

1
= — (Vp)th + (Vp)gt cp(ps)- (3.7.26)

The system of coupled differential equations (3.7.24) and (3.7.26) describes the mo-

tion of the shock along the road. It is easy to see that it must turn around at a
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point when
& =c(p) = g-00 —q(p) =0, (3.7.27)

and eventually it passes by the stationary point Ky. For a background headway
b_ = 3.0 (= p— = 1/3), as in Fig. 3.15, one finds from the fundamental diagram
Fig. 3.16 a corresponding headway b ~ 2.5 (p = 0.4) for which £ = 0. This agrees
quite well with the pulses in Fig. 3.15.

The final asymptotic behaviour is in analogy with Whitham’s [84] theory of asymp-
totic shock wave forming that contains equations similar to Eq. (3.7.3) with a convex

function ¢(p). Instead of the asymptotic solution Eq. (3.7.6), he writes

Coo T 0%
P=Poo
for a region
Coot — Z5(t) < T < Coot- (3.7.29)

Recall coo = ¢—oo and poo = p—oo- To determine the position of the shock coot —zs(t),
one has to take the conservation of cars into account. The additional number of cars

relative to the background density p_ oo

N = ‘/_00 (p — p—oo)dz (3.7.30)

has to be conserved. By definition, this is equivalent to

Cool
N = (p— p—co)dz (3.7.31)
Coot—xs(t)
and, hence,
Cool
/ (x — coot)dz = . tN. (3.7.32)
Coot—Zs(t)

Solving this quadratic equation in z(t) leads to two solutions

ws(t) = £1/2t [N, (3.7.33)

which corresponds to a shortage (+) and an overshoot (—) of density, relative to the

background density po. In this particular example, the latter case is considered.

The shock is at
Ts = Coot — /2| N|t. (3.7.34)

Inserting this relation into Eq. (3.7.28) gives an asymptotic expression for the time
dependency of the jump in density at the shock front (ps: maximum density at the
shock)

2

Ap=ps—poo=1|7

N

/
cm

(3.7.35)
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This means that the length I, of the wave increases like t1/2 and the jump in density
Ap decays like t1/2,

To check both results, the long time behaviour of these two quantities is plotted in
Figs. 3.19 and 3.20. The asymptotic expressions agree very well with the numer-
ical data extracted from Fig. 3.15. Since the speed of the shock front changes its
direction between t = 250 and ¢ = 500 where p; = 1/bs ~ 0.4, the point at ¢t = 250
in Fig. 3.19 differs remarkably little from the asymptotic solution, with the data

eventually approaching the curve with high accuracy.

In this section, the features of traffic flow described by a car-following model were
analysed by a simple continuum model without inertia in which the length scale of
evolution of the flow is long compared to 1/a, the relaxation required by traffic to
adjust to the optimal velocity. Hence, the flow is accurately modelled by assuming

that it has the optimal velocity.

3.8 The Inverse Transformation

It is also of interest to find the inverse transformation, a relation between the density
p of cars in the continuum picture in terms of the analogous parameter, the headway
b, in the car-following picture. This enables one to derive an equivalent car-following
model for every continuum model.

We expect p to be a function of b and its spatial derivatives

p = p(b,bg, bgz). (3.8.1)

As discussed in the next chapter, the derivatives with respect to x are not easy
to interpret in a discrete model. However, if we regard b formally as a continuous
variable, the inverse transformation can be found by solving equation (3.2.5) for
p. This time it has to be treated as a non-homogenous linear ordinary differential

equation with variable coeflicients

2 3

Py + —poz = 1. 8.2
bp+ 5 pa+ £ (3.8.2)

If we again suppose that each term is sufficiently smaller than the preceding order,
it is possible to solve for p successively.

However, a trivial way to find the solution is to argue that only certain terms in b,
b and by, have the right dimensions. To leading order, p is once again the inverse

of the headway
1
p=1 (3.8.3)
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To find the whole solution up to second order (b;;) and linear in b, and b, the

only possible ansatz is

1 bs
p= E + alg + asbyy (3.8.4)

with coefficients a; and a2 to be determined. Inserting this into Eq. (3.8.2) leads to

by bbye bbys
(14 a1by + agbbyz) + (—? + a1 5 )+ (— 5 ) =1, (3.8.5)
since the derivatives to relevant order are
bCB bwa:
Px ~3 + 17 (3.8.6)
ba:a:
Equation (3.8.5) may be simplified to
1 al 1
This equation must hold for arbitrary functions b(x) and, hence,
1 1
al = 5 s ag = —E (389)
yielding the transformation
1 by by
=3 + %" 12 (3.8.10)

This is consistent with a straightforward, but more detailed derivation of the solu-
tion (see Egs. (3.8.23) - (3.8.39)).

To support this somewhat heuristic ansatz, the inverse transformation of the con-
tinuous Bando model Eq. (3.2.16) is carried out, which must lead to the original
discrete Bando model Eq. (3.1.1). By inserting Eq. (3.8.10) into

2
(T _ Vel Pz | Pzz Pz
v+ vug = a (V(p) —v) +aV'(p) {2'0 + 6,2 _2p3} , (3.8.11)

we obtain formally

b 2b 12
= 1 bz (- Pz Pzxx ,02
(I N A 8.12
+oav <b+2b 12)[2p+6p2 203 (3:8.12)

Once again a Taylor expansion of the optimal-velocity function V around p = % is

carried out, whereas only the leading term % in V' is kept. Moreover, p, and p,, are

expressed by Egs. (3.8.6) and (3.8.7), and the nonlinear term p?2 is neglected since
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Chapter 3: Continuum Approach to Car-following Models

the inverse transformation Eq. (3.8.10) was only derived linearly. Equation (3.8.12)

then turns into

vtovv, = a [V (%) —v} (3.8.13)

L be bea) (1 ba_ bu)™
2 b2 2b b 2 12
Ll b (1, b bw)

6 b2 b 2 12 ’

The last square bracket may be simplified to give

[.]= [—b—’” L ] (3.8.14)

and cancels the preceding term. If b is now interpreted as a discrete variable, the

terms transform as

v(z,t) — v(zp,t) =v, (3.8.15)
b(z,t) — bz, t) =10y (3.8.16)
ve(z,t) + v(z, t)vg(z,t) = ditv(:c,t) —  0(Tn,t) = Un (3.8.17)

and Eq. (3.8.13) is equivalent to the Bando model Eq. (3.1.1) as required.

This analysis shows that even though the continuum version incorporates higher
order terms like a pressure and a diffusive term, they vanish under the inverse trans-
formation. This may appear surprising, since spatial derivatives contain non-local
information about the traffic flow ahead or even behind the car, and we would expect
those terms to occur in both models at first sight. However, since the transforma-
tion from the discrete model to its continuous counterpart, inevitably, brings along
higher order terms and, therefore, incorporates such non-local information, it must
already be contained somehow in the car-following model.

A look at the dynamics tells us, firstly, that the acceleration of each car ¥, depends
on the headway b,, to the preceding car. Secondly, the change of this headway bn,

does not only depend on the velocity of the nth car, but also on that of the car in

front
bp = Unt1—Un (3.8.18)
= V(ba1) — ”"C;” — (3.8.19)
= V(.Tn_|_2 - .Tn_|_1) - Un;—l — Un (3820)
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3.8. The Inverse Transformation

and is, therefore, a function of the parameters of the cars in front. If we express the

speed of the n-th car by a Taylor series, we obtain

vt + A = ”n(t)+Z(AntL)!m$—Tn 0 (3.8.21)
- Z m| jtn;[ (bn(t))—i)"f) . (3.8.22)

The differentiation of the second term in the square bracket is straightforward, but
the mth derivative of the first term V' (b,(t)) includes the (n + m)th headway and
velocity, as can be seen from Eq. (3.8.19). This way non-local information enters
the model. Hence, the car-following model already obeys dispersive effects, which
are explicitly revealed by the transformation into a continuum model as well as by
numerical simulations: small disturbances in the stable regime decay and spread

along the road as presented in section 3.7.

For completeness, we now carry out a stricter derivation of the inverse transforma-
tion. The problem of integrating the differential equation (3.8.2) lies in the variable
coefficients, but once again it can be solved successively. By taking only the first

two terms )

b
bp + 5Pz = 1, (3.8.23)

and using the ansatz

z 2
p(z) = A(z) exp (— L @) ') , (3.8.24)
2 2
This can be written as

Az) = /0 % [%exp < / %)} da’ + Ao. (3.8.26)

As one repeats partial integration, it becomes

A i </%) +/Omg—z [%ejp </%)]dm’+Ao (3.8.27)
) (1) oo (3]0

we find

I
|
]
>
e

— 1+b_$_l)w_w g + boza g de + A
S\ 4 )P b g TP\ ) )T
(3.8.29)
So to second order the solution of Eq. (3.8.23) is
1 by by
pP= b + 2_b - T, (3.8.30)
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and the full solution of Eq. (3.8.2) may be expressed by a perturbation

=-—4+—=—-—+44. .8.31
=13 + 2~ 4 +9 (3.8.31)
Substituting this expression into Eq. (3.8.2) leads to a differential equation for ¢
b2 b3 bb
b6 + =0z + —Ope = ——. 3.8.32
+ 2 + 6 6 ( )

For our purpose it is sufficient to solve this equation by neglecting the second-order
term 4z, since it contributes only higher order terms in which we are not interested.

Therefore, we solve only
2
5= (3.8.33)

by taking & to be
5(z) = B(z) exp (— / 5) . (3.8.34)

Hence, B(x) has to fulfill the integral equation
B = bz exp /2 dz' + By (3.8.35)
3b b

. bmz 2 bz:m: 2 /
= g oXP (/ 5) —/ 5 P (/ 5) dz’ + Boy. (3.8.36)

Likewise ¢ has the form

§= b% + higher order terms (3.8.37)
giving
p = E+2_b_T+6+m (3.8.38)
1 by by
= E + 2_b — E 4+ ... (3.8.39)

which is consistent with Eq. (3.8.10).
The inverse transformation can also be extended to the first nonlinear term b2, simi-
lar to p2 in Eq. (3.2.10). Either one adds agb2 /b to the right hand side of Eq. (3.8.4)
and determines a3 by a similar method, or the equation (3.8.32) is solved including
the second order term, which gives an extra term in Egs. (3.8.36) and (3.8.39). Both
methods are again equivalent and lead to a higher order approximation of the inverse
transformation

p25+2—b—§—é+.... (3.8.40)
Hence, if p(x,t) obeys the relation (3.3.29), both the transformation (3.2.10) and
its inverse (3.8.40) deliver proper analogous models for which the basic properties
and features of the traffic flow are maintained, and also qualitatively similar. Some
examples of car-following counterparts of continuum models and vice versa are given
in the next chapter. In addition, appendix B further comments on the inverse

transformation.
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3.9 Conclusion

We have derived a continuum model from a second-order car-following model by
using an integral representation of the headway. This enables us to transform the
headway and the velocity consistently by using an asymptotic approximation for
the former in terms of the density. For car-following models of the Bando type,
including an optimal-velocity function V', we have given a general expression of the
equivalent continuum model. In fact, the transformation allows for any model to
be transformed into its continuous counterpart. In the case of the Bando model [8],
the continuum version obeys the same stability criterion as the discrete counterpart.
Numerical simulations predict the formation and evolution of wave profiles, which
are well modelled by travelling waves using our continuum model, provided the gra-
dients are moderate.

One benefit of the transformation to the continuum analogue is that it creates a
powerful tool for traffic simulations. To calculate the travelling wave solutions on a
straight road, the programs for the Bando version require up to 1h (2000 cars, step-
size At = 0.005, simulation time 2000; Pentium 233MHz) and involve integrating
2000 coupled differential equations, whereas the solution of the ordinary differential
equations (3.4.12) and (3.5.17) takes about 5 seconds. In addition, the continuum
type allows for simple estimations of overall traffic quantities. This way, some fea-
tures of autonomous cruise control systems, whose algorithms for the regulation of
headway are often based on dynamic equations similar to the Bando type Eq. (3.1.1),
may be investigated in a continuum manner.

In a similar fashion, the inverse transformation relating density to headway enables
one to derive car-following analogues of any macroscopic traffic flow model that de-
pends on the density p and the velocity v. It is characteristic that they lead to
microscopic models, which consist of spatial derivatives of the headway and, hence,
include information of the traffic events further down- and/or upstream. The next

chapter will look more closely at this phenomenon.
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Using the transformation (3.2.10) and its inverse (3.8.10) which relate continuum
to car-following models, it is now possible to derive the continuum analogues of
various car-following models, and vice versa. This forms the subject of the present
chapter in which we develop analogous descriptions for a range of discrete car-
following and continuum models. We state the conditions and situations for which
the corresponding version is a good first-order approach.

Tables 4.1 and 4.2 give an overview of some models and their counterparts. For the
interested reader, this is followed by a more detailed discussion of their derivations,
containing some subtleties that arise throughout the transformations.!

One is that the analogous model is usually of higher complexity than the original
one, and it might not seem to be useful at first sight to transform it. However, the
advantage in doing so is to investigate what new terms arise. This gives an insight
into how different terms describe traffic features, and it might help to model traffic
flow more accurately. Future traffic flow models will have to take this into account,
and for autonomous cruise control systems this understanding is useful to set up

appropriate algorithms.

4.1 Continuum Counterparts of Various

Car-following Models

There is a great variety of different car-following models (subsection 2.2.2). As early
as in the 1950s the first ideas came up of how to model the individual interaction
between a vehicle and its preceding cars. (Interaction is a misleading word in the

sense that it is not Newtonian interaction that one deals with in traffic low mod-

Since the remainder of this chapter does not provide any background for the remaining disser-
tation, it may be omitted and the reader may proceed with chapter 5.
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‘ Car-following models and their continuum analogues ‘

1. Chandler model (4.1.a)
0: Up(t+T) = aby(t) ]
t: do(z+Az,t+T)=a —;’—3—%4—%{’—‘]
2. Gazis model (4.1.b)
o Un(t+T) = 550n(t) _
t: do(z+Az,t+T)=a —%—%+§%§—t-|
3. Advanced Edie model (4.1.c)
0 in(t+T) = 25000, (1)
t: ﬁ% [v(l_m)(:c + Az, t+T)| = ap'™? [—% — 5%5 —3§:§7t-|
4. Newell model (4.1.d)
o vt +T) = Vinaa [1 ~exp {— 7 [Ba(t) — brmin] H
t: v(z+ Az, t+T) = Vinas [1 — exp {—Vn‘jaz [b(z,t) — bmin]}-‘
5. Bando model (4.1.e)
o: Un(t) = a[VB(ba(t)) — vn(t)]
— — 2
t: v +ovy =a[V(p) —v] +aV’(p) [%—i—%—%}
with V(p) = Vi(1/p)
6. California model (4.1.f)
0: Up(t+T) =alby(t) +c—Tiv,]
t: %U(m—}-AmﬂH—T)=a[%—%—g’”72+%+c—ﬂv-|
7. Double Look-ahead model (4.1.g)
o: f)n(t) = albn(t — Tl) + az(bn + bn+1)(t — TQ)
t: v+ vy = arb(z — Az, t — T1) + 2a2b(z — Aze, t — T3)
+ ag [by(z — Azg, t — To)b(z — Axza,t — T)],
8. Hayakawa model (4.1.g)
0: Up =alU(bp)V (bp—1) — vn]
t: v +vvy =a[U(b)V(b— bby) — v]

Table 4.1: An overview of some (original) car-following models (0) and their (transformed)
macroscopic counterparts (t). The variables Az, Az;, Az, are determined by integrating
Eq. (4.1.7), the right hand sides are to be taken at (z,t) except from model 7, and the
headway b in the models 4, 7 and 8 has to be substituted by Eq. (3.2.10).
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elling.)
However, a crucial difference from the continuum models lies in the application of
differential delay equations to simulate the driver’s response time 7T'. The equations

are usually of the form

where F is some function of the headway b,, (the distance of the nth car to its pre-
ceding vehicle), the rate of change of the headway bn, and the car’s velocity vy,.
The time delay intensifies the expenditure of numerical calculations, since one has
to retain the values of each variable over a period T. By taking small time steps At
for the simulation, one ends up with 7'/At different values for each parameter and
each car. These have to be kept in the memory throughout the numerical run.

The time delay also causes trouble when applying the transformation (3.2.10) to
obtain the continuum analogue. As further explained in Appendix C, we cannot
represent this delay using a Taylor expansion of v, (¢t + T') around v(¢) that is trun-
cated after a certain order. This method simply does not reveal an equivalent model.
Therefore, these models cannot be transformed easily and, instead, they lead to a
system of partial differential delay equations (PDDE)2.

However, since car-following models may deliver a future algorithm to apply autono-
mous cruise control systems, the reaction time 7" will drop immensely and might be
neglected. A first-order approach might then be sufficient to derive a macroscopic
traffic flow model, similar to Eq. (3.2.16), but its validity would have to be checked
in every single case.

However, new terms arise under the transformation, which can be interpreted one
by one. This gives an insight into the macroscopic dynamics of the microscopic

car-following models.

a) The Chandler Model

A suitable example to show the problems involved in transforming a differential

delay equation is the simple Chandler model [16]
O (t +T) = aby(t). (4.1.2)

Due to its simplicity, it is regarded as the beginning of car-following modelling. Here,
a is equivalent to the inverse of inertia or, equivalently, the inverse of mass, since
Eq. (4.1.2) can be written as Mo, (t + T') := 10,(t + T) = bn(2).
The model is stable for

2Ta < 1, (4.1.3)

2Some may also refer to this as a delay partial differential equation
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4.1. Continuum Counterparts of Various Car-following Models

which seems quite plausible because instability should increase with rising reaction
time 7" and with extremely harsh braking, which is proportional to a.
To find the continuous analogue, we change formally to continuum variables, bearing
in mind that the reaction time 7" also affects the spatial coordinate x

%v(x + Az, t+T) = ab(zx, t). (4.1.4)

Applying Eq. (3.2.10) yields

v(z+ Az, t+T) +v(z+ Az, t + T)vg(z + Az, t +T) =
1 pa (T, t) _ paz(z,t)  p3(z,1)

_ , 4.1.5
@t " 2@t 6wt T 270, (.L5)

which is coupled with the conservation of cars
pt + (vp)z = 0. (4.1.6)

To solve this system of PDDE, both v(z,t) and p(z,t) must be given on an initial
interval [to;to + T'] (appendix C). These initial conditions differ from those of com-
mon partial differential equations, and we can, therefore, expect the phase space of
the solutions of a PDDE to be much richer than that of the corresponding partial
differential equation (T' — 0, Az — 0).

When v and p are both determined on [tg;to + T, the system (4.1.5) and (4.1.6)
can be integrated by the usual tools for solving partial differential equations. The
only problem that remains is how to interpret x + Az, which is the position that a
car at (x,t) will have at t + T. z; + Ax; at ¢; + T is obtained by integrating

z(t) = v(z,t) , z(t;) = z;, (4.1.7)

fromt; —> t; +T.
This is why the whole integration procedure becomes very complex: first of all, v
and p must be known on some initial interval [to; 9 + T|. Secondly, the coordinates
(z; + Az, t; + T) must be determined after every time step of integration by solving
Eq. (4.1.7). This is what makes PDDE so difficult to solve.
Therefore, one might attempt to approximate the continuum analogue by a first-
order Taylor approximation. Even though this is not correct in the first place (ap-
pendix C), we carry out this expression to see what terms arise and in what way
they are intrinsic features of the full PDDE-problem.
By writing

on(t) = aby(t — T) (4.1.8)

and taking formally continuous variables, the governing equation becomes
ve(z, t) + v(z, t)vg(z,t) = aby(z — Az, t = T). (4.1.9)
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As a first-order approach, the distance Az that the vehicle has travelled during T'
can be estimated as
Az ~v(z,t)T. (4.1.10)

Substituting this expression into Eq. (4.1.9) and carrying out a Taylor expansion to
first order leads to
v + vy = a (b — byvT — b,T),. (4.1.11)

The application of the transformation is straightforward, and if one neglects non-
linear terms O(p2, ...) and terms of higher order than second, the dynamic equation

reads
Pt Pat Pt Pat PPz + Pzz
vtovg=al-—— — +T—= +Tv— +Tvi—s——| . 4.1.12
z P2 203 2 2 3 ( )
1st order

The first-order equation combined with the conservation of cars Eq. (4.1.6) does
not incorporate the driver’s reaction time 7" and, hence, the stability criterion must
differ from the car-following case Eq. (4.1.3). However, as T' — 0 Eq. (4.1.12) might
well be a suitable approach to the PDDE (4.1.5).

The transformation of most car-following models is similar to this example and
straightforward, but for completeness, the continuum analogues of some popular

car-following models are given.

b) The Gazis Model

Most car-following models are based on the Chandler model. The parameter a is
often replaced by a function that also depends on the headway b, and/or the speed
v, of the car. Obviously, a driver tends to brake more harshly if he is closer to
the preceding car. Gazis [22] first tried to incorporate this effect by modifying the
Chandler model to obtain

a .
m(t+T) = bn(t). 4.1.1
bt +T) = 70 (1113)
The stability criterion is also similar,
1 a
— > — 4.1.14
2T ~ by (4.1.14)

as well as the continuum counterparts of both models. Since it differs only by
the division by headway, the continuum model to leading order is the same as the

Chandler model multiplied by the density p

d Pt Pat  SPzPt
— Az t+T)=a|-= - 22 ) 4.1.15
dtv(:v+ z,t+T)=a P 2/)2+ 23 ( )

Here as well as in the following, we retain the delay terms on the left hand side for

reasons of simplicity.
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¢) The Advanced Edie Model

A more advanced ansatz is to let the constant of proportionality depend on the
speed as well. It is a reasonable assumption, since for the same headway and change
of headway a driver tends to brake more harshly the faster he is travelling.

Gazis et al [23] assumed that the headway and the velocity depend on integer expo-

nents, and that the latter has an immediate impact on the driver’s reaction

avp(t+T)™ .
Tt)lbn(t). (4.1.16)

This means that the reaction time T towards the traffic situation is much bigger

on(t+T) =

than the time, say Tg, to realize someone’s speed: Ts/T < 1. It can be argued that
the driver knows his car’s “speed history” and that he is familiar with his speed
situation. On the other hand, T refers to the surrounding cars, especially the one
in front, and their behaviour is not predictable to the individual driver.

The transformation is rather straightforward and we obtain

%v(x+A:v,t+T) — a1 Pt Paxt 3pzpt
v(z + Az, t + T)™ P p 2p? 2p3

(4.1.17)

d) The Newell Model

A car-following model does not necessarily incorporate inertia explicitly. As long as
the governing equation is of second order in time, like Newton’s equation of motion,
inertia is certainly included. However, there are a few first-order models, such as
that of Newell [70],

o}

Un(t+T) = Vinaa [1 — exp {—V

max

[br(2) — bminl H (4.1.18)

with some constants a, top speed V4, and minimum headway b,,;,. No matter
what the car’s current speed is, it is given for a time 7' later on by the current
headway b. This clearly shows the lack of explicit inertia.

Even though this is too naive a model, it is worth carrying out the transformation
because it possesses an interesting mathematical feature. Either the transformation
is applied in the usual way as described so far, or Eq. (4.1.18) is turned into a partial

differential equation for the density p. Formally, the continuum analogue is

0(2,t) = Vinas [1 ~exp {_ b(z — At —T) — bmm]}] , (4.1.19)

max

and this can be substituted into the equation for the conservation of cars
pe(z,t) + [v(z, t)p(x,t)], = 0. (4.1.20)

7



Chapter 4: Analogous Models

Then the headway b(z — A,z — T') may be expressed in the usual fashion by the
transformation Eq. (3.2.10), which defines a new PDDE for p. However, we still
require the function v(z, t), because A can only be derived by integrating Eq. (4.1.7)

backwards in time.

e) The Bando Model

The Bando model [8] has already been discussed in great detail in chapter 3. This
model does not explicitly incorporate any reaction time 7" in the form of a differential
delay equation. However, it contains a driver’s sensitivity a, which is proportional
to the inverse of the relaxation time of adjustments to the flow conditions, and is
similar to most of the advanced continuum models. Due to this fact, it is able to
describe various features of real traffic flow.

The transformation of the car-following model
Un(t) = a[VB(bn(t)) — vn(t)] (4.1.21)

is straightforward. As it was already shown, it obeys the same stability criterion

a

1 4.1.22
vy, (4.1.22)
for long wavelengths, if the approximation of the continuum model is carried out to
first order,
= ! Pz Pzz ,02
=a(V(p) — v =4 = ==, 4.1.23
wkv = a (V) = o) 4aV'(p) [ B2+ B 22 ) (412)

lowest order
The lowest order approximation yields a model that is always unstable and, hence,
unrealistic.
It was proved that both the continuum and the car-following model predict qualita-
tively the same traffic behaviour in terms of travelling waves, asymptotic evolution of
pulses and instability. It should, therefore, be regarded as an equivalent continuum
model, when only modest spatial variations of traffic parameters such as density or

speed are involved.

f) The California Model

A model that is similar to the Bando type, but explicitly contains the reaction time
T, is the California model [16]. By taking the optimal-velocity function of the Bando
model to be Vp(b,) = (bn + ¢)/T1, one ends up with

n(t+T) = a[bu(t) +c — Tivn] (4.1.24)
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where a is given by “a/T:” from the Bando model. It is slightly unrealistic, because
the desired speed Vp tends to infinity when the headway tends to infinity.
Chandler showed in his paper that the time delay is not important for a stability
analysis and that the system is stable for

aT? > 2, (4.1.25)

which is, as expected, the same as Bando’s criterion. The continuum counterpart is
given by

v+ Az, t+T)=a l—&—pﬂ—k——kc—Tw . (4.1.26)

dt p 203 6p*

Once again, it should be emphasized that the continuum analogues of differential
delay equations are much tougher to handle than those of ordinary differential equa-
tions, like the Bando model. Since the latter succeeds in reproducing numerous
characteristic traffic features, it is not clear, yet, whether differential delay equa-

tions are necessary to describe car-following models.

g) The Double Look-ahead and the Hayakawa Model

There are a few car-following models which account for the traffic behaviour further
up- or downstream, and not only for the driver’s own speed, headway and change

of headway.

The Double Look-ahead model [37] assumes that the driver’s reaction does not
only depend on the distance to the car in front. Instead, he will also pay attention
to the events further downstream. Assuming the same headway, change of head-
way and speed, a driver will brake harsher if he approaches a region of increasing
rather than decreasing congestion. One possible way to model this behaviour is to
add another term depending on the headway to the car in front of the preceding
car. Different reaction times and sensitivities of these processes are represented by

different parameters a1, ag, T1 and T,

on(t) = aibu(t —T1) + aa(by + bpi1)(t — T2) (4.1.27)
= all.)n(t — Tl) + agi)n(t — TQ) + a26n+1(t — T2). (4.1.28)

A change to continuous variables formally yields

'Ut(xat) + v(:c,t)vz(x,t) =
albt(:c — Azq,t— Tl) + (J,th(x — Axg,t — T2) + agbt(:c +b— Axg,t — TQ).
(4.1.29)
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To apply the transformation relating headway to density, Eq. (3.2.10), we have to

estimate the headway b, 1 in the continuous formulation by
bn+1(X) = bp(zn +bn) = b(z+b(z)) ~ b(x) + by (z)b+ %bm(:v)b(:v)2 +.... (4.1.30)
This gives to lowest order
ve(x, t) + v(z, t)vg(z, t) =
a1by(z — Az1,t — Th) + agbi(z — Az, t — To)
+az [b(z — Aza,t — To) + by(z — Azo, t — Tp)b(x — Axe, t — T3)),,
(4.1.31)
and the substitution b = 1/p — p,/(2p%) — pzz/(6p*) reveals a continuum approach
to the Double Look-ahead model. This time, it is no surprise that diffusive terms

arise, because their discrete analogue contains parameters of cars that are two ahead,

which reveals information further downstream.

Finally, a recent model by Hayakawa et al [26] is presented. It is based on the
Bando model, but also depends on the headway to the following car

i = a[U(bn)V (ba1) — vn] (4.1.32)

without proposing any explicit time delay. If it can be once more assumed that the
headway is only slowly varying, b,_1 can be approximated in continuous variables
similar to Eq. (4.1.30)

bnfl(X) = bn(xn — bnfl) (4.1.33)
~ bu(@n) = B ()bt (X) + (4.1.34)
o) (@) — bl ()b () + .. (4.1.35)

where the dash denotes derivation with respect to x. The continuum version to

lowest order is then given by
v+ vy = a [U(b)V (b — bby) — v] (4.1.36)

with b being replaced by the transformation Eq. (3.2.10). A Taylor expansion of
the optimal-velocity function V = UV, which now depends on P, Pz and pgz, yields
cross terms like VU’ and V'U, respectively. It is a very lengthy formula and for this
reason not included here.

However, it is significant that higher order terms of the density are involved. In
the same way as the asymptotic series (3.2.10) is truncated after a particular or-
der to be applied to the continuous formulation, it is also justified to truncate the
series Eqs. (4.1.30) and (4.1.35) after the same order. The accuracy of these ap-
proximations depends crucially on the gradients of the traffic variables. As shown
above, terms of rising order have to be included to reproduce increasing gradients

accurately.
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4.2. Car-following Counterparts of Various Continuum Models

‘ Continuum models and their car-following counterparts
Ross model (4.2.a)
Vi + VU = %(Vf — )
Up = % (V5 — vn)
Payne model (4.2.b)
v+ vvg = % [V(p) — v] — vee
. y b, bl V'(bn) (bnbl, _ bZbI
UnZ%[V(b) ]+V< 7")— (T)(T—T)
Kiihne model (4.2.c)
v + VU = %[V( ) — ] —0(2)”7’: — WUz
i = L [V(b )—v] +c2 (i—%)
() ! 2 111 bn,
-Vl (0t T gt (14 )
Kerner-Konhﬁuser model (4.2.d)
0: v+ VU, = L [V(p) —v] — cl(z)p; _”'UUZTZ
iy = 4 [V(b ) — v] +c2 (b__%)
(7! ’ 2 111 bn
) (b - ) i (14 )

Table 4.2: An overview of some continuum (o) models and their microscopic counterparts

(t).

QR a QNae =

4.2 Car-following Counterparts of Various

Continuum Models

There are a few continuum models which contain inertia, but only a handful are still
of interest. In principle, each model is based on another, giving successively more
advanced approaches to describe traffic flow by continuous variables.

The way Lighthill and Whitham [58] (subsection 2.2.1) tried to describe traffic flow
turned out to be useful for specific traffic situations, but it is in general of no great use
in dynamic situations where inertia gives rise to instability. One setback is that their
model does not incorporate stop-start waves, which are a well known phenomenon
in real traffic events. Therefore, we restrict our attention to types which include

inertia, represented by a relaxation term of the form

1V (p(a, 1)) — vl )] (4:2.1)
with an optimal-velocity function V. This expression is similar to various relaxation
terms in physics, for example, friction or bringing density gradients into line.

So far, none of the continuum models include an explicit time delay, which in turn
simplifies the transformation into the corresponding car-following model. Neverthe-
less, it is doubtful whether traffic flow can be described in a continuum model which

incorporates neither the driver’s reaction time explicitly, nor the varying composi-
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Chapter 4: Analogous Models

tion of vehicles along the road.

We see in what follows that terms depending on the headway of following cars are in-
volved in the dynamic equation when continuum models are transformed into their
car-following counterparts. This reminds one of the Hayakawa model of the last

section.

a) The Ross Model

The simplest model that includes a relaxation term, and hence inertia, was suggested
by Ross [75],
1
vt + vUgy = T (V5 —w) (4.2.2)

with a top speed V;. It does not address the anticipation and “dissipative” effects
of traffic flow and should be regarded as a very basic approach. In addition, the
conservation of cars

pt+ (vp)e =0 (4.2.3)
must be fulfilled as for any of the following models. This model is special with
regard to the independence of the dynamic equation Eq. (4.2.2) on the density p.
The velocity evolves according to its own autonomous partial differential equation,
whereas the density is given by the coupled partial differential equation (4.2.3). It
means that it is necessary to know v to calculate p once the initial conditions are
given, but not vice versa.

The car-following analogue is similarly simple,
i = = (V= wn), (4.2.4)
which is a Bando model with an OV function

Vi (b) = V§ = const. (4.2.5)

For equilibrium flow situations, we have v, = 0 and in turn v = V}, which is
independent of the density p. Accordingly, the equilibrium flow ¢ = vp = Vyp has
no upper limit and corresponds to a uniform wave speed. Hence, this OV function
is too simple an approach to the driver’s behaviour and is not of greater interest in

the literature.

b) The Payne Model

The Payne model [71] of road traffic incorporates an anticipation term % that
reflects the driver’s reaction to a preceding traffic situation of increasing density,

but still with no dissipation. To transform the model

v+ VU = % V(p) —v] — u%, (4.2.6)
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4.2. Car-following Counterparts of Various Continuum Models

we restrict the consideration to the orders b, and b, and neglect higher order terms

O(b2,...). The inverse transformation Eq. (3.8.10) and its derivatives then become

= cgx Dw 42.
R TAE TR (42.7)
ba: ba:z
= _F 4.2.
Pz b2 %’ ( 8)
ba:a:

We first carry out the derivation formally by substituting these expressions into the
Payne model (4.2.6) and by discretizing these parameters. A Taylor expansion of
the OV function to first order similar to (3.2.16) then reveals

N b, b\ V'(by) (bab,  bEBE
Up = T [V(bn) - U] +v <E - 3) - T ( 2 - 12 ) ’ (4210)

where we have introduced the abbreviations

V(bn) = V(1/bn), (4.2.11)
by = %b(xmt), (4.2.12)
V'(bn) = %V(bn). (4.2.13)

The terms (4.2.11) and (4.2.13) cause no problems, whereas the discrete derivative
(4.2.12) needs more explanation. It has to be expressed by traffic quantities of the
system, since the continuous variable x is no longer involved in the car-following
model. Hence, when one discretizes a system, derivatives have to be expressed by
local variables that are known. For example, the first derivative of the headway with

respect to space becomes

0 Ab
b)) ~ A 5 (4.2.14)
b(Zni1) — b(Tp_1)
= 4.2.15
b(xy) + b(zn—1) ( )
bn+1 - bn—l
= - 4.2.1
bn + bn—l ( 6)
and similarly the second derivative
0? AY
gt ~ A (4.2.17)

<bn+2 - bn bn - bn—2

— bn_1+bn). 4.2.18
bpi1+by b1+ bn—z) /(na ) ( )

We can see that when the model is discretized, headways of cars in front of and
behind the particular vehicle are involved. This is a bit surprising, since all car-

following theories but Hayakawa’s [26] neglect the impact of the following vehicles
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on the driver’s reaction.

To lowest order, the discrete model is obviously equivalent to the Bando model, but
the derivatives make it more complicated. It includes a second spatial derivative b”,
even though the original model does not explicitly incorporate diffusion in the form
of a term p,,. Therefore, this term represents one reason for the spreading of an

initial disturbance in the stable regime

V| < Vv (4.2.19)
Po
of the continuum model Eq. (4.2.6). On the other hand, the involvement of the
second car (b,+1) ahead was already given in the Double Look-ahead model by the
term by, 1 in Eq. (4.1.27). However, even the third car ahead now has an explicit
impact on the nth car via b,42 in Eq. (4.2.18).

One might try to avoid the dependence on headways of following vehicles by writing

g . bn+1 - bn
Azl b,

Tn

(4.2.20)

but in fact this is not the local derivative at = z,,. Moreover, the second derivative
b"” would still involve headways of following cars. This shows that terms of the
continuum formulation might have a physical and sensible explanation, but fail
to do so in the corresponding car-following model. It is, therefore, an interesting
question, whether Nagatani’s idea of a non-local term p(z + A, ¢) in the continuum

model (section 3.5) is a more useful approach.

¢) The Kithne Model

The first approach to consider dissipation explicitly in traffic low theory was that
of Kiithne [53]. He added a dissipative term to the right hand side of Payne’s model
Eq. (4.2.6), which gives the dynamic equation a Navier-Stokes-like nature
1 2Pz

vt + VU = T [V(p) —v] — 00; + g (4.2.21)
The additional term can be interpreted as representing viscosity. Energy is clearly
not conserved in the system due to the braking and accelerating of individual cars.
This can be explained by the non-Newtonian nature of the interaction of vehicles.

Defining the mean momentum P of the car convoy in the usual fashion by the sum

of the individual momenta, p,

N
P:=) pn, (4.2.22)
n=1
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the change of the mean momentum is given by

N N

P = > pu=> Fn (4.2.23)
n=1 n=1
N

_ ( F®) 4 Frgf)) (# 0). (4.2.24)

n=1

) (p)

In most models apart from Hayakawa’s, the force FT(,f vanishes and the force F);
of a preceding car and F,(lf ) of a following car do not cancel each other. Hence, the
mean momentum is not conserved and dissipation is always present.

The problem that arises when one tries to apply the inverse transformation to this
model is the second derivative of speed. It has to be expressed by the speed of
cars surrounding the nth car analogous to the discrete derivatives of the headway
Eq. (4.2.18), if it is retained during the transformation. This can be avoided because
it may also be expressed by the velocity v and spatial and temporal derivatives of

the density p by making use of the conservation of cars Eq. (4.2.3). Writing the

latter as
vy = Pt T P (4.2.25)
0
yields the required equation
1
ver = 5 (VL ptbe — VPPus — Veppi — pPut) (4.2.26)
4225) 1
(4.2:25) — (21},03c + 20tz — VPPzz — ppwt) . (4.2.27)

The occurrence of p;, shows that the dissipative term of the Kithne and the Kerner-
Konh&user model is somehow related to the diffusive term of the Bando model.
However, Eq. (4.2.27) can be substituted into Eq. (4.2.21) to replace v, by variables

that are well known under the transformation

1 b, b
=4 > _ I 4.2.2
P=s b 12 (4:2:28)

It is straightforward algebra to determine the derivatives p,, pz, and p; from Eq. (4.2.28).

‘We obtain
by

b.’l).’l:
Wag = pv == (1 + %) (4.2.29)

for the additional dissipation term up to order O(b;;) by neglecting nonlinear terms
O(b?2). The analogous car-following model is similar to that of the Payne model.
Adding Eq. (4.2.29) to the right hand side of Eq. (4.2.10) yields

1 N bl bII

Un = T[V(bn)—v]wg <b—"—5”> (4.2.30)
V'(bn) (babl, _ D200 ba (1 bu
T (2 B 12)—“%?(”@)’
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which again includes headways of the following cars. This time it is less surprising,
since the original continuum model already contains a dissipative term. Moreover,

it also incorporates the temporal change of headway b, of the n-th car
bn, = Unt1 — Up- (4.2.31)

This term also appears in the Chandler, Gazis, Pipes, (Advanced) Edie and the
Double Look-ahead models. It reveals that a term which represents the headway
change in the car-following model is somehow related to a dissipative term in the

continuum formulation.

d) The Kerner-Konhiuser Model

Finally, we consider the Kerner-Konhauser model which is one of the most recent
and most discussed types. It is basically a slight modification of the Kithne model
Eq. (4.2.21). The dissipation term is divided by the density p to account for diffusion

relative to the overall density

1 v
v+ VU = T [V(p) —v] — c%% + ,u%. (4.2.32)

The car-following analogue is easily derived from the Kiihne model by taking the

division by p into consideration

: 1o 2 (bn  bn
V'(by) (bnb,  b2D" " bn
_ n _ “n’n | _ 1 LI
T ( 2 12 ) Honbn \ 145,

It has a richer structure than the Bando model Eq. (3.1.1), which is just a lowest
order approximation to this dynamic equation. It is, therefore, not surprising that
Herrmann and Kerner [38] discovered different numerical results when comparing
their model to a Bando model with almost the same optimal-velocity function (sec-
tion 3.5). To obtain as similar results for both models as possible, they fitted the
parameters of the OV function of their Bando model. The derivation Eq. (4.2.33)
suggests that it would be more accurate to use exactly the same OV function and
to incorporate the additional terms on the right hand side. It remains an interest-
ing question, as to what sense this model is an approximation to the original one
(4.2.32). This analysis is not carried out here due to the complicated numerical
modelling of Eq. (4.2.33).

4.3 Conclusion

In this chapter, we have presented continuum counterparts of some car-following

models, and vice versa. For this purpose, the transformation of chapter 3 is applied
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to various traffic flow models.

Most car-following models include an explicit reaction time 7" in the form of a dif-
ferential delay equation, so that the continuum counterpart consists of a partial
differential delay equation. It turns out that this is harder to solve than the original
ordinary differential delay equation. However, a Taylor expansion of the analogous
model reveals new terms which are an intrinsic feature of the original discrete car-
following model.

The derivation of car-following analogues from continuum models yields spatial
derivatives of the headway, which are difficult to interpret. It seems that even
traffic events behind a vehicle now determine its dynamics. Hence, it appears more
sensible to start from a car-following model which might even contain events further
downstream and to transform this into a continuum version, as presented in chapter
3 for the Bando model.

This analysis shows the disadvantage of continuum models when it comes to mod-
elling time delay, as well as different vehicles and driver behaviour. However, it also
reveals that discrete models contain diffusive behaviour, which is made explicit when

they are transformed into their continuum counterparts.
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Chapter 5

Wave Types in the Bando
Model

One advantage of car-following models is that they both simulate traffic flow and
have practical applications in the form of autonomous cruise control systems (ACCS).
These systems link each car to the preceding car via a follow-the-leader algorithm
similar to the governing equation of a car-following model, and the target is to en-
able high flux driving in stable and safe convoys. Hence, insight into the phenomena
associated with car-following models gives insight into ACCS.

One common and fundamental process is the merging of a platoon of moving cars at
one headway into a platoon moving with a different headway. This situation appears
at bottlenecks and lane merging, for example. In order to prevent instabilities and
dangerous traffic situations it is important to know what transitions can possibly
occur in the system.

Therefore, in order to deepen our understanding of car-following models, in this
chapter, we examine the transition from a linearly stable stream of cars of one head-
way into a linearly stable stream of a second headway, using the Bando model as a
popular representative of the car-following class.

Numerical results of the governing equations identify a range of transition phenom-
ena including monotonic and oscillating travelling waves, and a time dependent
dispersive adjustment wave. However, for certain conditions, we find that the ad-
justment takes the form of a nonlinear travelling wave from the upstream headway,
to a third intermediate headway, followed by either another travelling wave, or a
dispersive wave further downstream matching the downstream headway. This in-
termediate value of the headway is selected such that the nonlinear travelling wave
is the fastest stable travelling wave which is observed to develop in the numerical
calculations.

The development of these nonlinear waves, connecting linearly stable flows of two
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different headways, is somewhat reminiscent of stop-start waves in congested flow
on freeways.

The different types of adjustments are classified in a phase diagram, which shows
their dependence on the upstream and downstream headway and on the response
time of the model. These plots have profound consequences for ACCS, since for
an autocade of both identical and different vehicles, the control system itself may
trigger formations of nonlinear steep wave transitions.

Finally, we demonstrate that the phase diagram of different transition types, which
has been determined by extensive numerical simulations, may also be derived using
the continuum analogue. This approach could be far less time consuming, since it
considers an analysis of the phase space of the travelling wave solutions rather than

comprehensive simulations.

5.1 The Linear Stable Case

We examine flows in the linearly stable regime of the Bando model [8]
Un = a[VB(by) — vn], (5.1.1)
with the usual optimal-velocity (OV) function
VB (b) = tanh(b — 2) + tanh(2). (5.1.2)

As mentioned in chapter 3, Bando et al showed that the model is unstable in a

headway range

be, < b < b, (5.1.3)
for which SV (b
2Vp(b) > 1. (5.1.4)
a

Under these conditions, an initial uniform flow breaks down under the slightest
perturbation and turns into stop-and-go traffic. This is characterized by stable
regions of high speed merging into regions of low speed so as to conserve total flux,
and the high and low speed flows are both in the stable regime [78].

However, the dynamics of transitions in the two stable ranges
b < b, (5.1.5)

and
b > be,, (5.1.6)

have received less attention. Here, we examine the richness of behaviour which

may develop when one stream merges into a second. This is a generalization of the
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transition waves found in chapter 3, and provides new insight into the selection of
nonlinear stop-and-go waves. In the next section, we identify different transition
phenomena as the size of headway jump across the transition varies, and section 5.3
relates a nonlinear wave type of the stable regime to the stop-and-go jam fronts of
unstable flow.

Although the main part of our study uses the Bando car-following model, we include
some calculations using another OV function suggested by Herrmann and Kerner
[38]. This is in order to consider a dimensional model, and to investigate whether the
range of wave types found in the next section is an intrinsic feature of car-following

models based on a relaxation term.

5.2 Travelling Waves of the Stable Regime

The transition between traffic flows of different throughput is a well observed phe-
nomenon. Bottlenecks, speed limits, cars entering a jam or emerging from it, are
typical situations. Here, we study transitions which occur in freely moving traf-
fic without local speed limits or any other artificial hindrance caused by the road
layout. We expect the transitions that evolve to travel along the road, either up-
or downstream. Their direction and shape depend on the OV function and on the
sensitivity, which is related to the inverse of inertia.

From the instability criterion (5.1.4), it is clear that a platoon of cars is more stable
the smaller the inertia is. Heavier vehicles of higher inertia, which cannot react suf-
ficiently fast to changing traffic situations, are more likely to cause flow breakdown.
We therefore study travelling waves with large sensitivity a corresponding to more
stable flow. At a = 2.0, the flow is just on the verge of instability.

In our analysis, we consider transitions which evolve from initial conditions, similar
to Fig. 5.1, where the jump of headway is determined by the boundary conditions
b_ =b(x — —o0) and by = b(z — o0). Again, we prefer to present the figures with
lines rather than with dots representing each car, in order to simplify the compar-

isons of travelling wave solutions.

5.2.1 Transition Involving a Decrease in Headway:
Decelerating Traffic

Once the optimal-velocity function Vp is given, the only remaining parameter in
the system is the sensitivity a. For given a, the analysis of the wave fronts in
terms of upstream and downstream headways can be summarized in a diagram, as
shown in Fig. 5.2. On the verge of instability (a = 2.0), decelerating traffic can be

classified into six categories. Among these are two broad classes of travelling waves

90



5.2. Travelling Waves of the Stable Regime
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Figure 5.1: Initial change of headway in the Bando model, ¢t = 0. The initial speed of the
vehicles is given by v, (0) = Vg(b,(0)).

of permament form. Firstly, those which we call the Bando waves that lie on a line
in the (b, b_) plane separating regions III and IV and are in that sense non-generic
waves. They are always monotonic and will be analyzed later on. Secondly, there is
a class disjoint from the Bando wave which occurs for a whole area of the (b;,b )
plane. This has two sub-types: I which is monotonic; II which is oscillating.

We start with the interpretation of monotonic (region I), oscillatory (region II)
and dispersive transitions (region VI). These can be explained by looking at the
fundamental diagram of this stable model (Fig. 5.3), which describes stationary and

homogenous flow situations

a(p) = pv(p) = pVB(1/p). (5.2.1)

In the case of a monotonic travelling wave solution (region I), both up- and
downstream headways are greater than the point of inflexion by, = 2.0, and occur at
a density p that is smaller than the point of inflexion py = 1/byy = 0.5 (Fig. 5.3).
We can interpret this result in the limit @ > 1, where the Bando model corresponds
to the continuum model of Lighthill and Whitham [58]

pt+az = pt + [pVB(1/p)], = 0. (5.2.2)

In this model, the method of characteristics shows that the local wave speed c(p) is

given by the slope of the tangent of the fundamental diagram at its corresponding
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Figure 5.2: Transitions of decelerating traffic (a = 2.0): I: monotonic, II: oscillatory,
III: solution locks on to Bando wave plus a downstream travelling wave, IV: Bando wave,
plateau and dispersive tail, V: jump and dispersive tail for large jumps in headway, VI:
purely dispersive; AT: region of accelerating traffic (Fig. 5.5).

density
c(p) = qo(p)- (5.2.3)

For densities greater than pg = 0.36 of the maximum flow, the slopes are negative
and the information travels upstream. For waves of region I, the local upstream
wave speed as a function of position in the wave increases down the road. This leads
to a shock wave solution, where the wave speed is determined by its upstream (p_)

and downstream (p,) densities

_ Q(P—I—) — Q(p*) (5 9 4)
p+—p- o

C

Strictly speaking, waves of region I are monotonic travelling waves rather than shock

waves, since they do not include any discontinuous jump in headway. However, in
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Figure 5.3: Fundamental diagram: the transitions oscillatory — Bando wave (osc — bw)
and the Bando wave itself (bw) approach the fastest wave (ps,,) with increasing a.

what follows we will also refer to monotonic travelling waves as shock waves to un-
derline their structure and steep gradients.

For purely dispersive, time-dependent waves (region VI), both up- and down-
stream densities are larger than the point of inflexion and the magnitude of the wave
speed across the profile now decreases. This means that the speed of information
decreases as one moves downstream. Hence, drivers entering the transition react
faster to the traffic situation than drivers further downstream and, therefore, the
number of drivers who are part of the decelerating manoeuvre grows, and a disper-
sive tail forms. A travelling wave solution does not exist in this regime.

The oscillatory waves (region IT) always have an upstream density smaller than
the point of inflexion, whereas their downstream density can be either smaller or
bigger than the point of inflexion. It is, therefore, not as straightforward to inter-
pret the results. One has to be aware that the fundamental diagram shows the flow
as a function of the density only for a steady flow. Generally, for non-stationary
situations, the flow is not a function of the density any more. A given p might
correspond to various flows depending on the traffic situation, and the wave speed is
not a function of the density. One example is the travelling wave solution of region
I, where every point along the profile has the same wave speed, even though the
density varies.

However, in the limits of transitions involving small changes of headway and a — oo,

we expect a monotonic transition, since cars assume their desired speed immediately
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Figure 5.4: Transitions of decelerating traffic (a = 2.4): with increasing sensitivity regions
IIT and IV shrink until they vanish. Region V spreads out between region IV and VI. The
region II of oscillatory waves shrinks too, since the traffic flow reacts faster to changes in
headway due to lower inertia (which is proportional to 1/a).

and react sufficiently fast to the surrounding traffic situation. For greater jumps in
headway and smaller values of the sensitivity, deviations from the monotonic ad-
justment occur as oscillatory waves in a similar fashion to the transition from over-
to underdamping of a spring. With these larger changes in headway, the inertia of
cars is too large to allow for simple monotonic transitions in flow. We will present
a more mathematical argument in section 5.9.

However, when the jump in headway increases to a certain value, the oscillations
become so large that the wave jumps on to another solution (region III). It consists
of two monotonic travelling waves of different speeds, with a growing re-
gion of slow moving traffic in between. This solution first jumps from the upstream
headway b_ to an intermediate headway by,,, represented by the dotted line between
region III and IV in Fig. 5.2 before it eventually matches the downstream headway
through another travelling wave. The parameter by, is a function of b_ and the sen-
sitivity a and is here only determined numerically [11]. We refer to this nonlinear
wave between the upstream headway b_, and the intermediate headway by, as a
Bando wave.

For lower downstream headways than by, the transition involves a Bando wave
followed by a plateau of increasing length with a dispersive tail (region
IV). Transforming the headways of this graph, b = 3 and b, = 0.5, into the fun-
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damental diagram Fig. 5.3, the corresponding densities are rather far apart from
each other, with the point of inflexion in between. Therefore, the magnitude of
the local wave speed across a monotonic profile between these two headways firstly
increases, leading to a travelling wave, and then decreases, leading to a dispersive
wave. The wave profile we obtain consists of these two types of waves, as expected,
with a plateau by, ~ 1.3, overshooting the point of inflexion b;, = 2, due to the
inertia of cars. The plateau forms because the upstream speed of the Bando wave
is higher than the local speed of the dispersive tail at its onset. In terms of fluxes,
the Bando wave provides more cars per unit time (outflow of the Bando wave) than
cars beginning to brake at the onset of the dispersive tail (inflow of the dispersive
tail).

If the upstream headway is too big (region V), the difference of speed between the
Bando wave and the onset of the dispersive tail is negligible. The wave profile as-
sumes a solution in which the dispersive tail and the Bando wave have the
same speed and no plateau forms.

For higher sensitivities, equivalent to smaller inertia (Fig. 5.4), the cars react faster
to the traffic situation. Therefore, the regions of oscillatory waves and Bando waves
shrink until the latter eventually disappears. Monotonic and purely dispersive waves
(I and VI) still exist, and waves of type V take the place of plateau waves (type IV).
For large a, a > 2.0, four different wave types remain: monotonic (I), oscillatory

(IT), purely dispersive (VI), and Bando wave plus an adjoining dispersive tail (V).

There are at least two criticisms of our method. The first might be the very specific
initial conditions that we have chosen. In general, a different initial wave structure
might trigger another wave type. However, we could not find in any of our simu-
lations, including the on-ramp case of the next chapter, a further transition type.
These findings are supported by the interpretation of the transition types with the
help of the fundamental diagram.

Futhermore, the phase diagrams have been derived from numerical data only. It
presents qualitative rather than quantitative results. In particular, it was difficult
to reveal if waves of region V are really distinct from those of region IV. Moreover,
region III could as well become very narrow for b — oo rather than being cut off
at a certain headway. Accordingly, region III might as well become very small for

a — oo rather than vanishing.

5.2.2 Transition Involving an Increase in Headway:
Accelerating Traffic

Once the diagrams for the wave types of decelerating traffic (Figs. 5.2 and 5.4)

are worked out, those of accelerating traffic can be obtained by a mathematical
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Figure 5.5: Transitions of accelerating traffic (a = 2.0): I': monotonic, II': oscillatory,
IIT": Bando wave and second shock wave, IV': Bando wave, plateau and dispersive tail, VI':
purely dispersive; DT: decelerating traffic (Fig. 5.2); the wave phenomena are equivalent to
decelerating traffic apart from a missing region V' analogous to region V in Figs. 5.2 and
5.4.

transformation. By subtracting the governing equations (5.1.1) for two adjacent

cars n + 1 and n, say, we obtain the equation for the n-th headway

b = a [VB(an) — Vg(by) — bn] . (5.2.5)
For the OV function Eq. (5.1.2), this equation is invariant under the transformation
b=4-b. (5.2.6)

As a consequence, the wave profiles are symmetric about b = 2, and this relates
accelerating and decelerating traffic. The Figs. 5.5 and 5.6 showing the variety of
the wave types associated with accelerating traffic, are simply derived by reflecting
the diagrams Figs. 5.2 and 5.4 at the point (2.0/2.0). Here, the dispersive region V’
only appears for higher values of a (Fig. 5.6), because its upstream headway would
be negative and, hence, meaningless (Fig. 5.5). Similarly, we discover the same types
of transitions, and the disappearance of Bando waves and plateaus for sufficiently
high a.

For any given OV function, there is not necessarily a transformation similar to (5.2.6)
that correlates accelerating and decelerating traffic. Accordingly, the phase diagram

for accelerating traffic may not be determined by easy means as in this section.
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Figure 5.6: Transitions for accelerating traffic (a = 2.4): again, with increasing sensitivity,
regions III' and IV’ shrink until they vanish. Similarly, region V' spreads out between region
IV’ and VI', and eventually takes the place of region IV'.

However, we can still expect it to be qualitatively similar to the reflected image of
the phase portrait of decelerating traffic as shown here, even though it might have

quantitative deviations.

5.2.3 Fastest Wave and Bando Wave

For any given upstream headway b_, the model predicts a fastest travelling wave;
this can be identified from the fundamental diagram.

For a headway b_, equivalent to a density p— = 1/b_, the downstream density of
the fastest wave is given by the extremum of the wave speed Eq. (5.2.4). Setting
the first derivative to zero ¢/(p4) = 0, and excluding p_ = p; leads to

¢ (py) = Wor) = alo-), (5.2.7)
p+ — p-

which can be solved numerically for any OV function Vp. Equation (5.2.7) defines
the maximum speed as the point where the chord p_ — p; and the tangent at pt
are identical. It does not necessarily mean that this travelling wave exists, since the
transition can also occur as a dispersive wave, for example.
In Fig. 5.3, we choose b_ = 3.0 and find the fastest wave possible as the tangent of
this point onto the flow curve. The downstream headway b, = 1.54 of the fastest

wave corresponds to a density py = 0.65. We can see now that, as a increases, the
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Figure 5.7: For a given upstream headway b_, the fastest wave theoretically possible is
either not accessible or just for two cases, Bando waves. Otherwise it is either part of region
III (Bando wave) or of the dispersive domains V and VL.

headway jump, at which the oscillatory travelling wave (region II) is replaced by the
Bando wave (region III), approaches the headway jump associated with the fastest
wave. Similarly, the headway jump, at which the Bando wave (region III) is replaced
by region IV, also approaches the headway jump associated with the fastest wave.
This is consistent with the shrinkage of region III.

The curve of maximum speed Eq. (5.2.7) can now be added to the diagrams Figs. 5.2
and 5.4, which yields Fig. 5.7. It shows that for values 2.0 < a < 2.43, there are only
two points where the fastest wave exists, and these are the vertices of region III.
Otherwise, they are either part of the dispersive regimes V and VI or of the Bando
wave regime III. In the latter case, the solution jumps on to the slower Bando wave.
However, for values of a greater than the bifurcation point ¢ = 2.43, region III
disappears and there are no Bando waves in the system. Then, the fastest waves
predicted by the fundamental diagram lie entirely in the dispersive regions V and
VI.

We conclude that in the stable regime a > 2.0, the fastest wave predicted by the
fundamental diagram can only be found for two cases, which correspond to the
vertices of region III, the Bando wave regime. Since this region disappears for large
a, no fastest wave which is theoretically possible can be found for highly stable
traffic, a > 2.43.
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Figure 5.8: Onset of instability: wave profile after ¢ = 500 and a = 1.0 for an initial (¢ = 0)
jump at z =0 from b_ = 2.0 to by = 0.

5.3 Stable and Unstable Flow Patterns

In this section, we show that the jam fronts of stop-and-go traffic correspond to two
specific Bando wave solutions in the unstable regime.

Holland [39] investigated the plateau effect for unstable flow a < 2.0. This can be
discovered by setting up special road conditions, as illustrated in Figs. 5.8 and 5.9.
The first figure exhibits how an initial steady flow of uniform headway, b, = 2.0 at
t = 0, evolves if the leading car approaches red traffic lights (X), and decelerates
until it comes to a standstill at z = 0. The wave profile of Fig. 5.9 evolves from the
same initial conditions, but now the leading car accelerates at t = 0 and « = 0, from
Un=1(t = 0) = V(b = 2) to maximum speed v,—1(t = 00) = Vp(b — o0) = 1.96.
This simulates the end of a temporal speed limit along a motorway. At a = 1.0, the
model is unstable for b = 2.0 and after ¢ = 500, the oscillations in the platoon mark
the onset of traffic breakdown. However, we can already observe the plateau effect.
Now one can set up a map by, (b—), say, which specifies the plateau headway as a
function of the upstream headway, for both accelerating and decelerating traffic. It
turns out that the qualitative difference between the maps of the stable (a > 2.0) and
unstable (a < 2.0) regimes is significant, as shown in Fig. 5.10. The line 4 — b that
represents the invariance of Eq. (5.2.5) under the transformation (5.2.6), cuts the
curve of the Bando waves only for

a < 2.0. The intersections tell us how to fit Bando waves for accelerating and
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Figure 5.9: Onset of instability: wave profile after ¢ = 500 and a = 1.0 for a freely
accelerating vehicle at ¢ = 0 and ¢t = 0 from b_ = 2.0.

decelerating traffic together, to obtain the travelling jam fronts of stop-and-go traf-
fic. Starting with an arbitrary headway b_, of decelerating traffic for a = 1.0, the
map gives the corresponding headway b, of the plateau and hence the Bando wave.
Now using this as the new headway b_ for accelerating traffic, we obtain the corre-
sponding headway for the next Bando wave. Therefore, the curve defines recursive
maps by = f(b_) and b_ = f(b,), say, for decelerating and accelerating traffic,
respectively. Iteration leads to two fixed points, which correspond to the intersec-
tions with 4 — b, and this gives the stop-and-go pattern for a < 2.0. For a > 2.0,
there are no fixed points and hence no jam front pattern. This may be understood,
because the flow is stable and no flow breakdown appears.

Moreover, the asymptotic behaviour of the curve a = 2.0 suggests that the fixed
points are a linear function for ¢ < 2.0. In fact, for an OV function Eq. (5.1.2),
Komatsu’s [52] results reveal that the jump Ab of headway across the wave front

near a = 2 can be approximated by [39]

Ab = 1.581v/1 — 0.5a. (5.3.1)

This analysis shows that Bando waves define one class of solutions for the stable
and the unstable regime, in which plateau effects can also be found for various
upstream headways. However, when the instability sets in, eventually only two
specific solutions of this class are picked out and evolve: the stable, nonlinear stop-

and-go waves. This establishes a link between Bando waves and the work of Bando
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Figure 5.10: Phase diagram of the Bando wave for different sensitivities a. Only for a < 2
can they be fitted together to yield the typical jam fronts of unstable flow.

et al [8, 4].

5.4 The Metastable Regime

In the last section, we have linked the nonlinear Bando wave to the fronts of traffic
jams in the unstable regime. We can also show that there is another analogy between
this wave type and former results of traffic flow simulations.

Kerner [48] found that his model contains a metastable regime of the density, in which
an initial homogenous, uniform and linear stable flow may become unstable under
a sufficient perturbation of finite amplitude. This region of nonlinear instability is
adjacent to the unstable region with respect to density, and the critical amplitude
of the perturbation increases when moving away from the linearly unstable region.
When perturbed sufficiently, the system shows the cluster solution similar to Fig. 2.6.
This is not to be confused with the metastable states that the same author observed
in traffic data (section 2.1). Here, we deal with a theoretical result of traffic models.
However, in full accordance with Kerner’s results, there are two metastable regimes
in the car-following Bando model. Choosing the sensitivity to be a = 1.5, for
example, the headway range can be divided correspondingly into

bl b2, =145=0bl .02, =255="03..b}

ms)

(5.4.1)
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Figure 5.11: The cluster formation in the metastable regime. It consists of two Bando
waves (a,b) and another shock wave (c), which matches the downstream headway.

where bl . and b2, are the boundaries of the metastable region adjacent to the left
of the unstable region, whose boundaries are given by bl and b2,. Accordingly, b3,
and b2

ms are the boundaries of the metastable region adjacent to the right of the

unstable region.

If we start from an initial headway distribution as illustrated in Fig. 5.11 for ¢ = 0,
we can observe cluster solutions (¢ = 1000) for sufficient perturbations. They consist
of two growing regions of higher and lower headways, respectively, with respect to
the original perturbed headway by = 2.8. These regions are connected by three
shock waves. A closer examination reveals that the first two, a and b, are actually
Bando waves, whereas the latter, ¢, turns eventually into a shock wave of region I.

The structure is fully determined by the original headway due to the unique selection
of the Bando wave a and in turn . The “state” can only be “excited” when there
is a sufficient perturbation, so that the solution can lock on to the Bando wave a
and accordingly b. Since this solution type is also found in the dimensional Kerner-
Konh&user model (next section), it suggests that it might be a general feature of a
traffic model whose fundamental diagram contains a point of inflexion, as well as a

linearly unstable and metastable regime.
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Figure 5.12: The optimal-velocity function Vj(b) of the Kerner-Konh&user model. The
flow is unstable for headways 18m < b < 36m. The parameter b,,;, is the average space
that cars occupy in a standstill.

5.5 Comparison with other OV Functions

It is of interest to examine whether similar types of transitions occur for other OV
functions. This might support the idea that the wave types found in section 5.2 are
an intrinsic feature of car-following models with relaxation terms based on an OV
function.

Hermann and Kerner considered a Bando type model based on traffic data that does
not depend on individual vehicle characteristics and, therefore, averages over all cars

to obtain a dynamic equation of the form [38]
. 15
n = = [Vier (br) — vn] , (5.5.1)

with an OV function Vix(bn) = Vir(1/b,) and parameters as in section 3.5.

In comparison to the Bando model, there are three major features which are impor-
tant: firstly, the speed is only positive for headways bigger than b, (Fig. 5.12) and
by  analogy, the flow is only positive for densities smaller
than pmer (Fig. 5.13); and secondly, the flow is unstable in a regime
be; = 18m < b < 36m = b.,. These two features are different from the stable
Bando model. On the other hand, one feature that the models have in common is
that the flow has a point of inflexion, and this seems to be important for travelling

waves, as discussed above in more detail.
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Figure 5.13: Fundamental diagram: the flow vanishes for standstill jams (pmqz). The curve
contains a point of inflexion like the Bando model.

Figure 5.14 shows how linearly unstable platoons of cars with headways of 35m and
30m, respectively, merge. After 500 seconds, the flow consists of clusters of vehicles
with rapidly oscillating headways, which are followed by the stable jam pattern of
stop-and-go traffic between —6km and —2km. The headways of the latter, 48m
and 12m, respectively, are not symmetric around the point of inflexion b;, ~ 26m
(¢"(1/byy) = 0) any more, since the corresponding dynamic equation (5.2.5) for
the headways is not invariant under an appropriate transformation analogous to

Eq. (5.2.6).

However, this system contains Bando waves for suitable up- and downstream head-
ways, as shown in Fig. 5.15. This nonlinear wave is formed very rapidly from the
initial conditions, and the Bando wave already appears before the flow becomes un-
stable and breaks down. Bando waves can also be found for smaller stable upstream
headways, as long as the downstream headway remains stable.

In a more detailed numerical study, we found most types of transitions of the stable
regime as classified in section 5.2, with the exception of the oscillatory (region IT)
solutions. This wave type could not be reproduced, even though it is observed in
stable traffic flow. An explanation for this discrepancy between the model predic-
tions and the data may be that it is necessary to introduce time delay explicitly into
the dynamic equations, regardless of whether they are continuum or car-following
models.

In this analysis, the oscillatory waves might not occur since they lie in the unstable
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Figure 5.14: The evolution of an initial jump in headway in the unstable regime. The
typical jam cluster forms at the tail.
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Figure 5.15: Cars can adjust from an upstream to a downstream headway via a Bando
wave, even though parts of the headways involved in this transition are unstable.
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region.

5.6 Periodic Boundary Conditions

The results presented so far refer to a step-function as an initial condition (Fig. 5.1).
It is of interest to know how the profile evolves in the case of periodic boundary con-
ditions. This can be considered either as a train of density pulses along an infinitely
long road or as one density pulse on a circular road.

The latter case was investigated by Nagatani [66]. He studied the relaxation process
from nonuniform stable flow to uniform steady flow in freely moving traffic on a cir-
cular road. Initially, there are two density regions connected by kink-antikink waves.
As time evolves, the density profile assumes a triangular shock wave solution whose
amplitude decays with time, similar to Fig. 3.15. This solution can be described by
a Burger’s equation, derived from the original optimal-velocity model Eq. (5.1.1) in
the stable regime.

However, a triangular shock wave solution also arises from an initially uniform flow
on a straight road that is disturbed by a pulse-like density variation, as illustrated
in section 3.7. This shows that, unless we are in the metastable or unstable regime
[38], stable wave structures can only be found on straight roads for different values of
the upstream and downstream headways (b— # by). For periodic initial conditions
or periodic boundary conditions, as on circular roads, the wave profile eventually
assumes a steady uniform flow solution.

This can be explained in the phase diagrams Figs. 5.2 and 5.5. We consider two
step functions connecting regions of two different headways, say, bpign and bjoy, as
initial conditions. This means that the profile exists of wave solutions (bhigh, biow)
and (biow, brign), respectively, corresponding to two points in the diagrams Figs. 5.2
and 5.5. It can be seen from those that at least one of these two points lies in one of
the dispersive regimes. It is not possible to connect a monotonic or oscillatory wave
to another one and thus to obtain a stable wave structure. Therefore, dispersion
is inevitable, and the wave profile eventually approaches the steady uniform flow

solution.

5.7 Multi-species Flow

The advantage of discrete car-following models compared to continuum models
shows, when different vehicles on the road are simulated. Clearly, one has to expect
new effects, as the impact of a lorry on an autocade of identical cars suggests [61].
Using the Bando model, there are two ways to simulate varying vehicle charac-

teristics: introducing functions a, for the sensitivity or for the OV function V,,,
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Figure 5.16: Initial (¢ = 0) Bando wave for a = 2.0, followed by a convoy of cars with
higher sensitivity a = 2.4. The Bando wave changes shape but neither dissolves nor assumes
an oscillatory shape, as expected from Fig. 5.2.

depending on the vehicle number. Here, we restrict ourselves to varying only the
sensitivity a. This is because we can then interpret numerical results by using the
diagrams Figs. 5.2, 5.4, 5.5 and 5.6.

By contrast, a continuum model now contains an additional differential equation
for the sensitivity, and is more difficult to simulate numerically. The sensitivity
a(z,t) must be a function of space and time, since it has to move with the cars and,
hence, the flow. As an example, we consider the analogous continuum version of
the discrete Bando model. In addition to the coupled, first-order, partial differential
equations (PDE) for the density p and the speed v

pt+ (pv)z = 0, (5.7.1)
¥ 7/ Pz | Pzz 92
v tov, = alV(p)—v] +aV'(p) [% + 67 ﬁ] , (5.7.2)
we also obtain a PDE for a. It must be a constant for each car, and we simply find
d

%a(w,t) = a; +vay = 0. (5.7.3)

The flow is then determined by the initial conditions
p(z,0) = po(z) , v(z,0) =vo(z) , a(z,0) = ap(x). (5.7.4)

For slowly varying sensitivities across the autocade, and in the limit of small changes

in headway, this model is an accurate first-order approximation to the discrete ver-
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Figure 5.17: Evolution of a transition from b_ = 3.0 to by = 1.6 with a varying sensitivity
an = 2.4 + 0.2sin(27n/100): shape remains oscillatory.

sion. For randomly distributed sensitivities and rapidly changing headways as in
real traffic flow, however, the solutions increasingly diverge from this model.

As a classic example, we now consider a single truck of sensitivity ay., surrounded
by cars of sensitivity a.. Even if the convoy is of almost uniform density and speed,
the gradient of the sensitivity %a(m, t) in the continuum picture can be very large
near the truck, if the distance to its neighbouring vehicles is small. Even for this
simple case, the continuum model will fail to reproduce an appropriate picture of
the actual traffic events.

In what follows, we varied the sensitivity as a function of the car-number n in a

sinusoidal form

an = ap + €sin(2mn/N), (5.7.5)

and investigated how travelling waves change with time in the car-following Bando
model. Even though it seems to be an unrealistic and very special distribution,
it reveals that the system can go through an unexpected phase transition: once
it has switched to the Bando wave, it does not necessarily assume its initial wave
solution again (an oscillatory transition for instance) that corresponds to the average
sensitivity ag. Whether a phase transition occurs or not depends in a complex
manner on the parameters ag, €, n and N.

Figure 5.16 shows an initial Bando wave (¢ = 0) for a = 2.0. For ¢ > 0, the

sensitivity of the upstream cars is constant at a = 2.4. From Fig. 5.4 (a = 2.4,
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Figure 5.18: Evolution of a transition from b_ = 3.0 to by = 1.6 with a varying sensitivity
an = 2.4+ 0.4sin(27n/100): Bando wave forms.

b_ = 3.0, by = 1.6), we should eventually expect an oscillatory transition, rather
than a Bando wave. However, once the system has assumed this solution consisting
of two waves, it cannot return to its initial state, simply because the waves keep
going at different speeds. Thus, they do not merge into the state shown in its
corresponding diagram. Only the plateau, the intermediate headway, changes its
value.

Figures 5.17 and 5.18 give examples of how such a phase transition might occur.
The first represents the steady state solution (¢ = 0) of a transition from b_ = 3.0
to by = 1.6 at a sensitivity a = 2.4. For ¢t > 0, the sensitivity of the upstream cars

varies as in
an = 2.4+ 0.2sin(27n/100). (5.7.6)

One cycle contains 100 cars, and its mean is obviously ag = 2.4. After ¢ = 1000,
we still find an oscillatory transition, even though the stream of cars contains sensi-
tivities analogous to a Bando wave. However, their percentage of the whole cycle is
simply not sufficient to switch the state to this nonlinear wave.

This changes if we increase the amplitude in Fig. 5.18 to
an = 2.4+ 0.4sin(27n/100). (5.7.7)

It still gives the same mean ag = 2.4, but a higher variance

1 100
Aa = TAA n — 2
100 2@ ~ )

n=0

(5.7.8)
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and, hence, a higher percentage of those sensitivities which correspond to a Bando
wave. Now there is enough time during a cycle to form a sufficiently wide gap
between this wave and its corresponding downstream shock wave that it does not
dissolve during the next cycle. Therefore, a growing gap of varying shapes forms that
leads to an increase in travel time. An analogous situation appears for accelerating
traffic, which results in a decrease in travel time.

These few examples show already that a small fraction of vehicles can cause a phase
transition in traffic flow. For randomly distributed sensitivities among the vehicles,
the mean ag and the variance A, seem to be the two decisive variables in the system
that determine what state it will most likely assume eventually. Varying sensitivities
might, therefore, explain effects of traffic flow, which have not been reproduced with
constant sensitivity a and constant OV function V' yet. This stochastic approach

delivers plenty of problems and questions for future work.

A final note: another approach to modelling different vehicles in a continuum picture
is that the density becomes a N-dimensional vector p(x,t), where N corresponds to
the number of different types of vehicles. The conservation of cars now reads

o) + (20p9) =o. (5.7.9)
In contrast, the dynamical equation has to couple all densities in a complicated
multi-dimensional model

i i), (i 1 i i i
vt( ) o )y = T [Vl(ﬁ) — ol )] + Ai(9)pD + B;(2)pl) + ... . (5.7.10)

7

This model would be far more complicated than one additional PDE (5.7.3) which

takes the variation of the sensitivity along the platoon into account.

5.8 Impact on Bottlenecks and

Autonomous Cruise Control Systems

The effects we have discovered have significant implications for speed limits and
bottlenecks. They predict that for certain jumps of headway, determined by either
of these measures, the traffic flow locks on to a nonlinear wave. The bottleneck de-
termines the downstream (upstream) headway, whereas the type of transition that
evolves also depends on the flow further upstream (downstream). The most desir-
able transition in a bottleneck is the monotonic type. Oscillatory waves cause rapid
braking and acceleration, which leads to higher fuel consumption and dangerous
traffic situations. The same applies to Bando waves which, in addition, contain a
congested region. Therefore, it might be of greater use to set up bottlenecks and

speed limits stepwise along the road, depending on the upstream traffic situation.
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5.9. Travelling Waves in the Continuum Model

Each stretch decreases the speed by a moderate and monotonic transition. This can
be a safer and more stable method than a localized large decrease in velocity at a
speed limit.

This has to be taken into account when implementing ACCS. The main goal of
this application is to couple cars in a convoy by electronic control of their speed
and acceleration by an algorithm based on a car-following law. This should result
in a stable autocade of high safety and flux [77]. However, the major problems of
convoy driving are the merging of cars at on- and off-ramps or at lane merging, and
the adjustment to bottlenecks and speed limits. All these road features have an
impact on the autocade by changing the density of cars locally. From our analysis,
we expect transitions between these regions of different headways, travelling up- or
downstream along the road. The aim of any control algorithm would be to avoid
oscillatory and Bando waves.

As shown in the last section, it only requires a few cars of a multi-species convoy to
cause phase transitions in the system, which lead to time delays and harsh braking
manoeuvres. The wave type that evolves (monotonic, oscillatory, Bando wave, etc)
depends on the composition of the vehicles with regard to their control algorithms.
In a multi-species flow, these vary from car to car. It is, therefore, harder to predict
what implications a given speed limit or bottleneck might have on a stream of dif-
ferent vehicles. However, the accuracy of the predictions increases when the control
algorithms converge.

Speed limits which vary with time can be regarded as a changing bottleneck. They
can be adjusted to the current upstream traffic situation. However, there are bot-
tlenecks which have static characteristics such as maximum speed and throughput,
given by the road layout, for example. In this case optimal safety, stability and flux
might be obtained by dynamic algorithms, which adjust to the downstream bottle-
neck situation. In-vehicle information of the oncoming traffic situation, as realized

by mobile technology or beacons along the road, could deliver the required data.

5.9 Travelling Waves in the Continuum Model

1S0 far, the analysis of the transition types has been carried out in the car-following
model. The most important aspect has been the question of whether one travelling
wave or another transition structure forms, once the up- and downstream conditions
p— and p4 are given. Here, the change from an oscillatory wave type to the Bando
wave is of particular interest. As already mentioned, this occurs in the continuum

model, when the integration of Eq. (3.4.12) breaks down, and it is this instability

!This section contains work that was mainly carried out by and in cooperation with Wilson [87].
It should only be regarded as a brief overview of the continuum analysis of the transition types.
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that we will investigate in the following.
If we rewrite Eq. (3.4.12) in terms of the density by using Egs. (3.4.11) and (3.4.5),

it yields
2 2
9 v, 4q0 7/ Pz Pzz P
—8,, =al|V(p)— = — Vv == — . 5.9.1
Pz = [ (p) ) C] +aV'(p) [2;) + 62 2p3] (5.9.1)

This can be turned into a system of two coupled first-order ordinary differential
equations, if a new variable w is introduced. It is simply given by w = p, and,

thereby, transforms Eq. (5.9.1) into

p: = w, (5.9.2)

w, = F(p,w) (5.9.3)
60° { [CIO - ] % } 3w?

= _ a|l=+c-V - Swp + — — 3pw. 5.9.4

a0 ) (p) 3 PR (5.9.4)

For any boundary conditions p_ and p,, which also deliver the speed c of the travel-
ling wave (if it exists), this system can be linearized around the up- and downstream
densities, p— and p., respectively. An analysis of the phase space of p and w and
its fixed points then reveals the qualitative shape of the travelling wave, or that it
does not exist, but it does not reveal if the travelling wave is stable.

As an example, we consider a wave that connects an upstream density p_, with a
downstream density p}r, as illustrated in Fig. 5.19a2. The chord and its gradient
represent a travelling wave solution and its speed, respectively. Note that there is
a second intersection of the chord with the flow curve and, therefore, a second po-
tential travelling wave with the same wave speed, connecting p_ and p%r. As shown
earlier on, when pi moves along the flow curve, the solution turns at first from
the monotonic into the oscillatory type before it eventually hits the critical density
pi = perit, Where it locks on to the Bando wave (pp,, > pi)

These transitions are explained by the phase space diagram (Fig. 5.19b) of these
solutions without a more detailed discussion of the underlying algebra. Roughly
speaking, monotonic waves of region I exist when the central state is a stable node
and the left hand saddle connects to it. Oscillatory waves of region II form when
the central state is a stable spiral and the left hand saddle connects to it. Bando
waves are connections from the left hand saddle to the right hand saddle. Here, the
central state cannot connect to the left hand saddle in the phase space. This is not
a generic effect and explains why these waves lie on a line in the (b4,b_) plane.
This analysis does not only predict the transition from a travelling wave to a different
wave structure; it may also be used to determine the downstream density pp,, of the
Bando wave. Wilson verified that the values coincide with those of the car-following

model with an accuracy of at least 1 per cent, and this method is still part of much

2The flow is scaled by a factor of 2 for purposes of illustration.
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(a)

(b)

ZaS S/ AN

Figure 5.19: a) Scaled fundamental diagram with upstream (p_) and downstream (p,
pﬁ_) densities. b) Phase space diagram of travelling wave solutions: local stability analysis
reveals that the upstream state is always a saddle, the centre (downstream) is either a stable
node or a stable spiral and the right state (downstream) is always a saddle.

current research [87]. This approach could deliver a much faster method to deter-
mine the phase diagram of the transition types like Fig. 5.2 for which no simulation
of the flow itself has to be carried out. Moreover, it could also be used to support
the idea of Kerner [38] that all traffic flow models with an unstable and metastable
regime, as well as a point of inflexion in the fundamental diagram, reproduce similar
features. This idea is, therefore, an exciting starting point for future fundamental
research.

However, one might argue that infinitely many roots are dropped in the analysis
of the local stability of the fixed points when going from the discrete model to the
second-order continuum model, and that this method is, hence, not correct. For
example, Bevan [15] has shown that a linear stability analysis of Eq. (5.2.5) for the

car-following Bando model reveals a delay equation for the downstream headway
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perturbation of a travelling wave solution

1. .
Ebn(t) + by (t) + sech?(by — 2) [bn(t) — bp(t + T)] = 0. (5.9.5)
The delay T is given by the up- and downstream headways b_ and b, respectively,
as follows , ,
T = - : 9.
tanh(b; — 2) — tanh(b_ —2) (59.6)
If we assume a perturbation of the form
bn(t) = Aexp(At), (5.9.7)
it shows that the characteristic equation
1
EV + X +sech?(by — 2) [1 — exp(AT)] = 0 (5.9.8)

has infinitely many roots, of which only two can be positive [15]. The argument
that the continuum method nevertheless applies is similar to the agreement of the
stability analysis of chapter 3. The continuum and the car-following picture are only
analogous descriptions in the limit of small changes of headway. Large gradients do
not play an important part in stability analyses, and higher order terms can hence

be neglected. This is why the results in both classes coincide.

5.10 Conclusion

We have investigated different types of wave solutions in a stable, optimal-velocity
model of road traffic, the car-following Bando model. Once the parameters of the
model, the sensitivity and the OV function, are given, the wave types can be repre-
sented in a diagram by their up- and downstream headways. There are six possible
transitions (Fig. 5.2): monotonic, oscillatory, purely dispersive, Bando wave (a non-
generic monotonic travelling wave) plus dispersive tail, Bando wave plus plateau and
adjoining dispersive tail, and a Bando wave followed by a second wave.

In the last case, the transitions exist of two monotonic travelling waves of different
speeds, with a growing region of congested or free flowing traffic in between. For
sufficiently high sensitivities, equivalent to small inertia, the cars react fast enough
to the traffic situation, and the wave does not assume this specific solution any more.
For these sensitivities, Bando waves and plateaus are not solutions.

For a given upstream headway, the fastest travelling wave predicted from the fun-
damental diagram is either not accessible, or it only exists for two specific upstream
headways in the form of Bando waves. In the first case, its corresponding headways

are either part of the dispersive regime or it locks on to a slower Bando wave.
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5.10. Conclusion

There is a strong connection between Bando waves and travelling jam fronts of stop-
and-go traffic of unstable flow. They are analogous, but while Bando waves can be
found for various upstream headways for a given sensitivity, these jam fronts are
uniquely determined: jam and free flow densities are functions of the sensitivity
alone. A similar analysis reveals a correspondence between Bando waves and the
clusters of the metastable regimes.

The wave types can be interpreted by the fundamental diagram. The higher the
sensitivity, the faster the cars react, and the closer the actual dynamic flow is to the
equilibrium flow. However, for small sensitivities, the actual flow may differ signifi-
cantly from the fundamental diagram. Therefore, an interpretation of the observed
transitions is not as straightforward any more.

We have compared our results to another Bando-type car-following model, based
on different parameters fitted to traffic data. We have discovered all types of waves
apart from the oscillatory transitions, due to the choice of the sensitivity parameter.
It shows that the wave types we found may be an intrinsic feature of car-following
models with relaxation terms.

The Bando waves play an important role when considering varying sensitivities.
Once the system assumes this solution, the growing region of congested traffic be-
tween the two waves does not necessarily dissolve when returning to higher sen-
sitivities. Hence, even in a linearly stable system, we can find irreversible phase
transitions.

This has to be taken into account when implementing autonomous cruise control
systems. The algorithms should be fitted in order to avoid increasing travel times
and intense braking manoeuvres. This might be realized by dynamic algorithms,
which take the current downstream traffic situation into account.

Finally, we have mentioned that this work, which was carried out in the discrete
Bando model, may also be interpreted in its continuum analogue. This does not
only save time, it might also be a basis for future research which tries to link vari-
ous continuum models including a relaxation term. Furthermore, it underlines the
thought that traffic models show similar features if they contain an unstable and a
metastable density regime as well as a point of inflexion in the corresponding stable

fundamental diagram.
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Chapter 6

Simulation of an On-ramp in a

Car-following Model

Finally, we present an on-ramp simulation of the Bando model, which reveals qual-
itatively similar results to previous simulations of continuum models carried out by
Helbing [32] and by Lee, Lee and Kim [56]. Among various solutions, we discuss
the solitary waves in greater detail. They can be approximated by a Kortweg-de-
Vries (KdV) equation derived from the analogous continuum version. Hence, this
establishes a further link between these two types of traffic simulation, and supports
the idea that models of either kind lead to similar predictions when they contain a
relaxation term.

Moreover, the results of this chapter uncover some aspects of on-ramps and their
impact on the current traffic situation. It might help in implementing controls of
the on-ramp flux via traffic lights, for example, which depend on the current flow
conditions on the motorway. These systems are already in use at various spots in

the Netherlands and Germany, for instance.

6.1 The Model

So far, there have been two attempts to model oncoming vehicles near a ramp.
Firstly, Helbing et al and Lee et al have simulated an on-ramp in their continuum
models by introducing a source term to the right hand side of the equation for the

conservation of cars
pt+ (pv)z = Gin(,1). (6.1.1)

Secondly, Helbing used a macroscopic model to represent the on-ramp and its vicin-
ity, whereas the remaining stretch of road was simulated by the corresponding mi-

croscopic model [30, 80]. Here, the authors leave the question open as to how to
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6.1. The Model

Figure 6.1: A model for the on-ramp.

incorporate the interaction of the two systems near their interfaces.
In contrast to this dual methodology approach, we aim for a direct on-ramp simu-
lation of the discrete Bando model [8]

U = a[VB(by) — vp] (6.1.2)
with the monotonic increasing optimal-velocity (OV) function
VB (b,) = tanh(b, — 2) + tanh(2). (6.1.3)

Cars are inserted in an open system (“infinitely” long road represented by 2500
vehicles in the numerical simulations) at £ = 0, with constant flux grqmp after ¢ =0
(dimensionless running time of programs between 1000 and 2500), as illustrated in
Fig. 6.1. Their speed must match the speed of the surrounding cars at the ramp.
For ¢t < 0, the traffic state consists of equally distributed cars of density pg = 1/bg
along the road with constant speed vg = Vg(by). To avoid crashes, vehicles only
enter the road if a safety distance d, both to the car in front and behind, is given.

It turns out that this is fulfilled in the overwhelming majority of cases.

Since inserting cars at an on-ramp is a discrete process in space and time, the
continuum analogue is found by adding a delta function to the right hand side of
the equation for the conservation of cars (6.1.1). If the ramp is at = 0 and its flux

is constant, it reads

2 ...
Pt + 9z = Gin(z,t) = qmmp&(a:);é[sm(wt)], (6.1.4)

where cars are inserted with a frequency w/2. This equation has clearly no stationary
solution, p; = 0 and ¢; = 0, since the right hand side depends on time. This discrete
process will be further illustrated by the results of small on-ramp fluxes.

However, if the ramp flux is of a similar order to the upstream flux, or if the system
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Chapter 6: Simulation of an On-ramp in a Car-following Model

reacts sufficiently fast to a discrete perturbation caused by the on-ramp, we can
expect stationary solutions on a macroscopic scale. In the continuum picture, they

correspond to a constant flow gremp so that Eq. (6.1.4) turns into

4z = QTamp(s(-T)- (615)

Integration yields a relation between the upstream, the on-ramp and the downstream
flux

d—co + Gramp = Qoo (616)

which is another expression for the conservation of cars. A Fourier analysis reveals

the shape of ¢q: we write

ae) = o+ [ QU expliCha)]a, (6.1.7)
gin(z) = % " Gramp expli(ka)] dk. (6.1.8)
(6.1.9)

Substitution into Eq. (6.1.5) gives
1 oo

L™ ikQ k) expli(ka)] di = % /_ " Gramp expli (k)] dk (6.1.10)

21 J_ o

and, therefore,

1 [ ,
q(z) = o+ 5 / Q(k) expli(kz)] dk (6.1.11)
= q+ L / ~ Gramp expli(kz)] dk (6.1.12)
2 J_ ik
. / T Gremp G (o) dk (6.1.13)
2 J_o Kk

—Qramn/2 <0
= q@+{ ¢ v/ ’ (6.1.14)
Qramp/2 : x>0

becomes a Heaviside function. This is a rather obvious result, but it does not mean
that the density and the velocity jump too. In the latter case, this would correspond
to an infinite acceleration or deceleration, whereas in reality, we expect the velocity
and the density to assume a continuous profile. It is the discrete on-ramp process
that is incorporated into a continuum model, which leads to inconsistencies. Strictly

speaking, there are no stationary solutions on the microscopic level.

6.2 Traffic States near On-ramps

We will now summarize the events in the vicinity of an on-ramp for a constant

oncoming flow grqmp, Which is equivalent to a constant number of vehicles entering
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Figure 6.2: a) The traffic states of the on-ramp. The dotted box refers to Helbing’s analysis
[32]. b) The fundamental diagram for a = 1.5, showing the original flow ¢ of density po
before the on-ramp perturbation sets in, contains an unstable region.

the road per unit time. This might not be particularly realistic, but it gives a first
insight into the system, and a foundation for further research regarding time depen-
dent ramp parameters.

To make the simulations a bit more realistic, they are carried out with a sensi-
tiwity a = 1.5 for which the model Eq. (6.1.2) is linearly unstable in a density
regime p € [0.39,0.69]. This in turn corresponds to a headway range b € [1.45,2.55]
(Fig. 6.2b).

Figure 6.2a shows the traffic states that can be found after the on-ramp flux sets in.
Depending on the original density pp and grqmp, we find triggered stop-and-go traf-
fic upstream (TSGu), oscillatory congested traffic upstream (OCTu), homogenous
congested traffic upstream (HCTu), “dipole” congested traffic upstream (DPCTu),
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dispersive congested traffic downstream (DHCTd) and oscillatory congested traf-
fic downstream (OSCd). These types turn out to be qualitatively the same as in
Helbing’s continuum model [32], in which the author restricts the analysis to the
dotted box shown in Fig. 6.2a. In addition, two more solution types can be revealed
when one considers perturbations of highly dense traffic: dispersive homogenous
congested traffic upstream (DHCTu), and dispersive peak located congested traffic
upstream (DPLCu). It should be mentioned that going from one solution type in
the diagram to another is a continuous process. Hence, the lines which separate
the regions should not be regarded as phase transitions. Helbing came to the same
conclusions, and we will comment on this again later on.

At first sight, it is very surprising that the car-following model reveals the same re-
sults as some continuum models. However, in case of the TSGu state, this analogy
can be shown explicitly (section 6.3) by using the continuum analogue of the Bando
model. In the following, we will discuss all of these types briefly, apart from the
TSGu, OCTu and OSCd states, which will be explained in greater detail in sections
6.3 and 6.4. Once again, the fundamental diagram is of great importance in inter-
preting and classifying the solutions.

Unless otherwise stated, the figures represent the traffic state after ¢ = 1000.

6.2.1 Dispersive Homogenous Congested Traffic
Downstream (DHCTd)

This solution occurs for various on-ramp flows which perturb a single lane of the
free flow regime.

Figure 6.2b shows that the linear wave speed of such a perturbation, the gradient
of the fundamental diagram at the corresponding density, is positive. Therefore, as
a first-order approach, we can expect information to travel downstream, leaving the
upstream headway unperturbed. This in turn results in the profile shown in Fig. 6.3.
It contains a jump of headway in the vicinity of the ramp, which is determined by
Eq. (6.1.6). The transition back to the original headway further downstream ap-
pears as a dispersive wave, as discussed in chapter 5.

The speed varies only gradually across the profile due to the almost constant value of
the OV function in this headway regime (Fig. 3.1). Helbing refers to this type as the
free traffic state, since the upstream headway is unperturbed, and the downstream

flow generally remains in the free flow regime.
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Figure 6.3: Dispersive homogenous congested traffic downstream (DHCTd): the flow jump
at the on-ramp is determined by Eq. (6.1.6). The upstream headway remains unperturbed,
and the downstream headway is linked to the original headway by a dispersive tail.

6.2.2 Homogenous Congested Traffic Upstream
(HCTu)

Adjacent to the DHCTd region, where we find slightly higher ramp flows and original
densities pg, the linear wave speed analysis does not apply any longer. The oncoming
traffic volume is now too large not to influence the upstream traffic events. The sum
of the upstream flow and the ramp flow exceed the maximum flow ¢nq, =~ 0.58,
which leads inevitably to a piling up of cars in front of the ramp.

Another argument is that the downstream density of a DHCTd state would exceed
the density of maximum flow pq; = 0.36, and the downstream information would
travel upstream towards the ramp. This explains why the DHCTd has to vanish
eventually, and the HCTu state of Fig. 6.4 takes over.

Now an upstream plateau forms in the vicinity of the ramp, which is linked to
the original flow by a shock wave. The jump at the ramp is again determined by
Eq. (6.1.6), leaving the question open as to how the downstream headway is selected.
In the case of an ideal flow, we could expect that it reacts instantaneously to the
traffic situation (¢ — o0), so that it assumes the maximum flow downstream of

the ramp. All vehicles of the ramp enter the lane and, between these, some of
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Figure 6.4: Homogenous congested traffic upstream (HCTu): the flow jump at the on-ramp
is determined by Eq. (6.1.6). The upstream headway is matched by a shock wave, and the
downstream headway by a dispersive tail. The downstream flow in the vicinity of the ramp
is close to the maximum equilibrium flow.

the upstream vehicles squeeze in, in order to obtain maximum flow. However, the
sensitivity is restricted to a = 1.5, leaving a finite inertia of cars. This way, the flow
does not react optimally to the ramp events, and the downstream flow differs slightly
from ¢p,qz. The numerical data reveal that for increasing a, the plateau approaches
b = 2.78, the headway of maximum flow. Correspondingly, the boundary between
DHCTd and HCTu is identical to the curve defined by go + g¢ramp = @maz only in
the limit a — oo.

However, the downstream transition back to the original headway appears again as

a dispersive tail.

6.2.3 Dipole Congested Traffic Upstream (DPCTu)

In this regime, the sum of the original flow ¢ and the ramp flow gramp still ex-
ceeds the maximum flow. We would, therefore, expect a solution similar to HCTu.
However, the jump in headway of the first shock wave becomes so large that we
now observe a Bando wave. This is represented in Fig. 6.5 by the dotted box. The
downstream plateau of the Bando wave influences, in a complicated manner, the
other headways. However, the jump at the ramp is given as usual by Eq. (6.1.6),

and the downstream plateau in the vicinity of the ramp approaches the headway of
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Figure 6.5: Dipole congested traffic upstream (DPCTu): the flow jump at the on-ramp is
determined by Eq. (6.1.6). The downstream flow in the vicinity of the ramp is again close
to the maximum equilibrium flow. This determines the upstream flow in the vicinity of
the ramp, which can only be matched by a Bando wave (dotted box) and, hence, a further
plateau.

maximum flow for a — oo.

Kerner refers to this profile, which is similar to the cluster solution of the metastable
regime, as a “dipole” structure. On the other side, Helbing also calls the DPCTu
state homogenous congested traffic, which occurs in front of the on-ramp as the

simulation time grows.

6.2.4 Dispersive Homogenous Congested Traffic
Upstream (DHCTu)

When the original density is increased even further, it turns out that any perturba-
tion can only travel upstream. In Fig. 6.6, the downstream headway is unperturbed,
whereas vehicles in front of the ramp form a congested state, whose headway is once
again given by Eq. (6.1.6).

The transition from the original headway to this plateau occurs once more as a dis-
persive tail in accordance with the results of chapter 5.

This state leads to a piling up of cars in front of the ramp, which might eventually
cause a flow breakdown. Hence, in this regime, on-ramp metering must carefully

monitor the motorway situation.
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Figure 6.6: Dispersive homogenous congested traffic upstream (DHCTu): the flow jump at
the on-ramp is determined by Eq. (6.1.6). The downstream headway is unperturbed, and
the upstream headway is linked to the original headway by a dispersive tail.

6.2.5 Dispersive Peak Located Congested Traffic
Upstream (DPLCu)

If the oncoming traffic volume is further increased to a level where it matches the
original flow, a new wave type appears. The downstream flow of vehicles is now
fully provided by the on-ramp, so that the upstream cars come to a standstill and
pile up in front of the ramp. This leads to a notch, shown in Fig. 6.7, since the
length of the cars was assumed to be zero. A finite length of cars would result in a
plateau, which spreads out in front of the ramp. However, this standstill is linked

to the original headway by a dispersive tail.

The curve that separates the regions DHCTu and DPLCu, should ideally be the
stretch of the fundamental diagram in the corresponding density regime represented
by the dotted line in Fig. 6.2a. However, it is hard to tell from the numerical data
where this line really lies, depending on the process, as to whether the vehicles come
to a temporary or a permanent standstill. One has to be careful in interpreting

these numerical results.
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Figure 6.7: Dispersive peak located congested traffic upstream (DPLCu): a dispersive
tail, matching the upstream headway, ends in a total halt of cars at the on-ramp. The
downstream headway is unperturbed.

6.3 Triggered Stop-and-go Waves and Solitons

There is one case where the correspondence between the car-following and the con-
tinuum simulations can be shown analytically: the triggered stop-and-go state of
Fig. 6.8, which is also interpreted as synchronized flow due to its high flux and its
slowly varying speed [56]. We can prove that the TSGu solution can be approxi-
mated using the continuum analogue of chapter 3
- N V-

v+, = al|V(p)—v]+aV'(p) [% + 67 ﬁ} ) (6.3.1)

Vip) = Vb(1/p). (6.3.2)

In the following, we neglect the nonlinear term in p2, since the same wave type
also occurs in the previously mentioned continuum models, which do not include
it. Moreover, inclusion of p2 would not allow for an analytical solution any longer.
On the other hand, neglecting it could lead to a solution that deviates from the
numerical data, depending on its order in comparison with the other terms.

Being in the linearly stable regime (Fig. 6.2b), we can try to interpret the solitary
wave type in Fig. 6.8 as an upstream travelling wave away from the on-ramp. Hence,
there will be no source term on the right hand side of Eq. (6.1.1).

Since the waves resemble cnoidal waves, which are solutions of the Kortweg-de-Vries
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Figure 6.8: The triggered stop-and-go state (TSGu) resembles the cnoidal waves solution
of the KdV equation.

(KdV) equation
we are motivated to try and extract a KdV equation from Egs. (6.1.1) and (6.3.1)

by balancing nonlinear and dispersive effects, as well as neglecting the dissipation
in the first place.

If we consider travelling wave solutions away from the on-ramp and change to the

reference system of the wave by introducing the coordinate
z=x—ct (6.3.4)
with the wave speed ¢, the system of Egs. (6.1.1) and (6.3.1) turns into

—cp:+q. = 0, (6.3.5)

—ev,+vv, = alV(p)— V') |22 4 P2 | 6.3.6
cv, + Vv a[V(p) —v] +aV'(p) [2p+6p2] (6.3.6)

with the flow g being the product of the density and the speed

q=pv = Vy, = % — qp;. (637)
p P

This way, the dynamic equation Eq. (6.3.6) can be written as

Pz o 2cp, a _ aV' 2 aV’
——=q +(—+—)q:aV+<—+— :+ 5 P2z 6.3.8
p P p 2 p) T 6" (6:38)

126



6.3. Triggered Stop-and-go Waves and Solitons

We then approximate the flow g to lowest order as
q= PV + a1p, + a2pz2- (639)

The leading term pV represents the fundamental diagram Fig. 6.2b, which describes
homogenous stationary stable flow g of density p and speed V(p). The parameters
a1 and ag can be found by substitution of Eq. (6.3.9) into Eq. (6.3.8) as

| Z4 S N o
a = ?+E(V -2V +¢%), (6.3.10)
7
= — 6.3.11
a2 6p7 ( )
which leads to
= [Vl e o v’
= — 4+ — -2 s+ — Pz .3.12
qg=pV + 5 +a(V V+)|p +6pp (6.3.12)

If the second term in p, can be neglected in comparison to the third term in p,,, we
can rewrite the equation for the conservation of cars Eq. (6.3.5) as
_ V!
—cpz + (pV), + apuz =0. (6.3.13)

If we consider perturbations of the density
p(x,t) = p* + p(z,t) (6.3.14)

near the maximum flow ¢naz = ¢(Pmaz = 1/2-78) ~ 0.58, pV can be approximated
by the first terms of a Taylor series
[/ * Y/ * {7 ~ 1 [/ A~
pV = p*V(p*) + (pV) ‘ p+5 (oY) ‘ Pt (6.3.15)
Plp=p* 2 PP | p=p~
Inserting this into Eq. (6.3.13) yields (dropping the “hat”)
{7/
~ep:+ [(67), 4 (07) 0] P2 + g pese =0, (6.3.16)
which is the KdV equation that we were looking for. This equation is only a good
approximation under the assumption |a1p,| < |a2p.z|- One way to show this is to
derive the solution of Eq. (6.3.16), and then to examine how accurately this condition
is fulfilled.
We first transform the KdV equation into a standard form found in most books

about this topic [19]. In order to do so, we introduce a new variable

u(z) = = [(pV)p + (pV)pp p] . (6.3.17)

Now Eq. (6.3.16) turns into (¢ and g—; negative)
"
—(—c)uy — buu, + (—a> Uz, = 0. (6.3.18)
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_ 6p
zZ= \/—ﬁz (6.3.19)

—(—C)’U,z - 6UUZ + Uzzz = 0, (6320)

A coordinate transformation

yields

which is the standard form whose solution is
1 1
u(z) = 3¢ sech? <§\/—cz) . (6.3.21)

This in turns delivers

1 6Cp P
/[ =(—ct)| — = .3.22
37 c>] . (6322)

3c
_ sech?
(V) ,,

which has to be added to p*. Therefore, we end up with two parameters to be fitted,

p(z,t) =

the wave speed ¢ and p*. They are not independent of each other, since they should
ideally fulfill the flow conservation criterion: the downstream flow must equal the
sum of the on-ramp flow and the average flow of the upstream soliton-like profile.
This is how the soliton is selected.
However, p* determines all remaining parameters in Eq. (6.3.22) by taking their
values at p = p*. An analysis of the individual terms reveals that the solution does
not vary much, with p* being close to the maximum of the flow curve.
One way to determine the two parameters, is to use the numerical results, which
deliver both the wave speed

c=—0.64£0.03 (6.3.23)

and the density
q¢* =0.301 £+ 0.001 . (6.3.24)

These lead to a soliton solution, as shown in Figure 6.9, which illustrates that the
analytical solution does not quite reach the right amplitude or width. This might be
based on the fact that due to its high amplitude, higher order terms such as p2 come
into play that have been neglected in this analysis. Furthermore, dissipation may
broaden the distribution. Nevertheless, the analytical solution can be regarded as a
good first-order approach, even though the flow criterion cannot be exactly fulfilled.
This is different for the fit, which shows in addition that the numerical data really
has the shape of a sech?-soliton.

If we now consider the values of a1 and a9 as shown in Fig. 6.10, it becomes clear that
the soliton solution appears in the regime where the dissipation term becomes negli-
gible, and |a1(p = 0.365)p,| < |a2(p =~ 0.365)p..| applies. Therefore, as a first-order
approach, we can neglect this term and the KdV equation is justified. Neverthe-
less, dissipation would also contribute an asymmetric correction term that explains

the discrepancy between the left hand and the right hand side of the maximum in
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Figure 6.9: The solitary wave solution of the car-following simulation (TSGu) is only partly
matched by the analytical solution (6.3.22) due to higher order and dissipative effects. The
latter reaches about 82 per cent of the actual amplitude represented by the sech®-fit.

Fig. 6.9 [43]. It can be treated as a small perturbation agp,, to the KdV equation
(6.3.16), and the solution is then found by introducing multiple time scales [43].
This comprehensive method goes beyond the scope of this dissertation.

Another effect, which might explain further discrepancies, is that we assumed ao =
V’'/6p to be constant. In fact, it varies with p between —2.2 and —1.2 across the
density range of the soliton solution. If the term depends on p, it will not allow an
analytical solution any longer. Similar arguments hold for the other parameters in
Eq. (6.3.22).

As mentioned above, the results of this section coincide with earlier publications
that consider various OV models. It, therefore, supports the idea that OV models
which contain an unstable density region in the fundamental diagram lead to similar
predictions of on-ramp states. However, it does not imply that all states of Fig. 6.2a
can actually be found in real traffic [31, 45]. It has to be regarded as a purely math-
ematical theory, whose predictions might not fully cover real traffic events, since it
lacks stochasticity, varying vehicle parameters and time delay. Hence, it is doubtful
if the TSGu state can really be interpreted as synchronized flow just because of its
high flux and slowly varying speed [56].

The oscillatory state OSCu of Fig. 6.11 was considered by Helbing as an individual
state. However, it occurs more plausible to regard it as the limit of the TSGu

state, when the wavelength of the cnoidal wave solution is shrinking. The maximum
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Figure 6.10: The coefficients of the expansion Eq. (6.3.9) in the density range of the soliton
solution. The solitons form in the regime of negligible dissipation.

headway b =~ 2.76 of the solution which, in analogy to the TSGu state, is close to
the headway of maximum flow, is a strong hint for this. This also corresponds to
the finding of the author that there is no strict boundary between these two phases.

6.4 Downstream Oscillations

In the free flow regime, which is equivalent to small densities pg, we can find down-
stream oscillations (OSCd) for small on-ramp flows, as illustrated in Fig. 6.12. The
upstream headway is again unperturbed due to the positive wave speed of the free
flow regime, whereas the downtream headway eventually assumes a level (plateau)
given by the upstream and the ramp flow. The oscillations in the vicinity of the
ramp decay more slowly when these two parameters tend to zero.
The solution evolves due to the discretization of the model, which is most obvious
in this regime. This is because the OV function varies only gradually with the head-
way and, so, the governing equation for the headway of the downstream plateau
Eq. (5.2.5)

by + ab, + aV (b)) = aV (by_1) (6.4.1)

can be approximated by a Taylor expansion (b = b, + 13) of the OV function to first
order (dropping the “hats”)

bn + aby, + aV'(bp)bn, = aV”'(by)by 1. (6.4.2)
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Figure 6.11: Oscillatory congested traffic upstream (OSCu).

Looking for solutions for the n-th car
by (t) = by, + Bexp(At) (6.4.3)

following the (n — 1)-th car, for which we assume a constant headway

br—1(t) = bp, (6.4.4)
we find for V' < a
12
N o= =V - VT + . (6.4.5)
Aoy = —a— ). (6.4.6)

For t — oo, the first root will dominate, and we see that the adjustment takes place

on a time scale )
= — "3* (6.4.7)

which explains the growing adjustment time with increasing plateau headway caused
by small upstream and ramp flows.

We can now try to interpret the OSCd type with the help of the continuum version.
We have already seen how this solution might be triggered in the car-following model,
by considering individual vehicles which are inserted in between two cars of the free
flow regime. A disadvantage of this analysis is that it does not deliver any spatial

length scales or periods of this traffic pattern.
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Figure 6.12: Oscillatory congested traffic downstream (OSCd): the envelope is stationary,
and the plateau is determined by Eq. (6.1.6).

To work out these values, we look for solutions of the continuum model around the

plateau of the form

p(z,t) ~ exp(kr — wt) = exp(krx — wyt) exp [i(kiz — wit)], (6.4.8)
0(z,t) ~ exp(kr — wt) = exp(k.x — wyt)exp [i(kiz — w;t)], (6.4.9)
with
w = wp+iw;, (6.4.10)
ko= ky+iks. (6.4.11)

In accordance with the numerical data, we make two assumptions: the envelope is
stationary, which equals w, = 0, and the wave speed ¢, of the oscillations coincides
with its linear pendant

cp = % = q,(1/by). (6.4.12)
Hence, one variable can be expressed by the other one, once the downstream plateau
of headway b, is determined. This leaves us with two unknown real variables, k,
and k;.
One way to find these out is to insert the asymptotic expressions (6.4.8) and (6.4.9)
into the linearized continuum model of chapter 3, Egs. (3.3.6) and (3.3.7), and to
solve for k, and k; by setting the determinante to zero analogous to the stability

analysis of the continuum model.
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6.5. Conclusion

It turns out that there are no real roots, k. and k;, neither for the example in
Fig. 6.12 nor in other cases. Therefore, this asymptotic analysis fails, and it seems
more reasonable to assume that the solution cannot be approximated in terms of
harmonic functions. This is not very surprising, since the pattern only shows in the
regime where the discrete nature of the model is most obvious. It is this discrete

process in the free flow regime which cannot be described by the continuum analogue.

6.5 Conclusion

We have classified various traffic states in a car-following model which occur in the
vicinity of an on-ramp for both constant upstream and constant ramp flow. They
are in good agreement with Helbing’s results [32], and further support the idea that
car-following and continuum models reproduce similar features if they contain a
relaxation term. In the case of a solitary wave train — the triggered stop-and-go
waves (TSGu) — this analogy can be verified analytically. This type represents a
solution of a KdV equation, and is the product of nonlinear wave steepening and
dispersive effects near the maximum flow.

It should be stressed that the transition between the various types in the phase
diagram Fig. 6.2a is smooth and does not occur as a phase transition of any kind.
It is indeed very hard to say in what regime one is near the boundaries.

Kerner argued that the on-ramp triggers numerous solutions of single lane flow.
Accordingly, some types covered in this chapter have already occured in the analysis
of the transition types in chapter 5: DHCTd consisting of a shock wave and a
dispersive wave, HCTu consisting of two shock waves and a dispersive tail, DPCTu
containing the cluster solution of metastable states, DHCTu consisting of a dispersive
and a shock wave, and DPLCu, which is a dispersive adjustment wave from dense
traffic to a standstill. Here, the difference lies in the location of these transitions.
They appear as stationary solutions, which are bound to the ramp, rather than
structures moving up or down the road. However, the TSGu, OSCu and OSCd
states are not found in single lane simulations. They have to be triggered by the
on-ramp in the sense that it pushes the trajectory of the vehicles towards a limit
cycle of the corresponding phase space, which results in oscillatory behaviour.
Helbing has found a similar phase diagram for bottlenecks, which suggests that it is
a general feature of road inhomogenities [80]. These results are part of much current
research, comparing theoretical predictions to empirical data, which might contain
additional traffic states.!

LAt this date, the relevant publications by Kerner and by Helbing are still in preparation.
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Chapter 7
Summary and Outlook

This dissertation establishes a link between microscopic car-following models and
macroscopic continuum models of traffic flow, which have so far been considered as
different deterministic systems. This is achieved by the derivation of a transforma-
tion that relates the headway and density, which are the analogous parameters in
these models.

Special attention should be drawn to the optimal-velocity type, represented ulti-
mately by the car-following Bando model, since it is the most popular and promising
type of model used in recent research. Upon application, the transformation delivers
a second-order continuum model, which resembles those of Kiihne [53] and Kerner-
Konhé&user [48]. It demonstrates that the occurrence of pressure and diffusive terms
can be characterized as an implicit feature of the discrete model, rather than as a
merely stochastic term of the continuum counterpart caused by random fluctuations
of the flow.

The analogy between the two models is further supported by stability analysis and
comparison of their travelling wave solutions. This correspondence increases, fur-
thermore, with the number of terms that are kept throughout the transformation.
However, the same stability criterion holds already true for a second-order model
and, moreover, the travelling wave solutions’ description is sufficiently accurate, even
in the occurrence of the steepest gradients, which is what we call Bando waves. In
addition, traffic data suggest that higher order terms do not add remarkable contri-
butions, so that higher order models are of no further interest.

The transformation and its inverse enable the derivation of a variety of analogous
models, both for the car-following and continuum types. Here, the time delay of cer-
tain discrete models causes problems when working out the continuum counterpart.
The result, a partial differential delay equation, is far from practical and suitable.
On the other hand, when going from the continuum form to the car-following ana-

logue, spatial derivatives of discrete variables, in particular the headway, are difficult
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to interpret. This comparison reveals the superiority of car-following models when it
comes to time delay and the simulation of different driver and vehicle characteristics
among the platoon.

The results of the travelling wave analysis of chapter 5, and the on-ramp simulation
of chapter 6, do not only further support the analogy between car-following and
continuum models. They couple with the suggestion that optimal-velocity models
of the microscopic and the macroscopic type produce similar traffic features when
they contain a linearly unstable and adjacent metastable density regime. A variation
of the OV function, whether it is dimensionless or not, changes the phase diagrams
quantitatively, but not qualitatively.

The results of this work are vital for flow simulations and the implementation of
autonomous cruise control systems. By relating discrete and continuum models and
discussing various flow situations, some intrinsic effects of these formulations have
been uncovered. Among these is the range of transition types between different
flows. The analysis of these transitions has revealed a wider understanding of how
they are triggered, what terms dominate and when nonlinearity is apparent. The
identification of real flow patterns with these theoretical predictions might help in
assessing why, when and whether traffic simulations and control algorithms lead to

sensible solutions, last but not least, by the prediction of the qualitative results.

Whatever results a traffic model reveals, it is imperative that they are compared
with traffic data to assess its accuracy. It can only be regarded as a fundamentally
sound model if it reproduces specific traffic features. Most of these are quite well
understood by now, apart from synchronized flow on highways [44]. It is still un-
clear whether the latter can be described in the framework of the current models or
whether higher order models, stochasticity, or time delays are necessary to match
the empirical findings.

Despite this, traffic flow modelling delivers a powerful tool in providing insight into
the intrinsic effects of the system. An example might be in the recent discovery
of Helbing [32, 80] that bottlenecks, on-ramps, speed limits and spatial variations
of the road characteristics have similar impacts on the flow condition in the sense
that they trigger the same traffic states in his simulations. This and the hypothesis
that all traffic models predict similar behaviour if they fulfill certain criteria, might
be a light at the end of the tunnel after the proposal of increasingly more models.
However, the combination of empirical research and theoretical modelling in recent
years suggest that this highly random system can only partly be described by deter-
ministic mathematical models and that its features have to be considered as a result
of the stochasticity and the nonlinearity of the flow. Here, one of the most challeng-
ing tasks remains as to how to relate analytically stochastic cellular automata and

deterministic car-following models, as described aptly by Nagel [67]. This project
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goes beyond the scope of this dissertation; on the other hand, our results provide
some background knowledge in how to tackle this problem.

In this framework, it would also be of interest to investigate whether the combi-
nation of random variables describing multi-species traffic [61], reaction time and
temporally changing driver characteristics lead to a more realistic reproduction of
traffic data, possibly including synchronized flow. However, in addition to the com-
prehensive numerical effort, the problem with this approach might be the lack of a

deeper understanding of the system due to the greater amount of parameters.
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Appendix A

Cellular Automata

In some situations, traffic is very similar to granular flow. However, since granular
motion describes interacting particles whose movements depend on physical contact,
the theory cannot be applied straightforwardly. Nevertheless, cellular automata
(CA) models have proved to be a useful means to simulate congested flow, city
traffic including junctions, and lane-changing. In contrast, the free flow regime of
motorways is unlikely to be well modelled this way, because there is little or no
interaction among the vehicles, due to the low density.

The granular flow theory of traffic encountered a great boost with the introduction

of a stochastic (discrete) automaton model by Nagel and Schreckenberg [68]. A road

road >

Figure A.1: Cell hopping in a cellular automata models. ’0’: free cell; ’1’: occupied cell.

is divided into cells, approximately the size that a car occupies in a jam. Each site
may either be empty, or occupied by a vehicle. Each car has an integer velocity with
values between 0 and v,,4.. The update of the traffic situation is then based on a
fixed number of rules which allow a car to hop to one of the next free cells ahead,

as in Fig. A.1:

e If the velocity v of the car is lower than v, and the distance to the next car

ahead is larger than v + 1, the speed is increased by one.
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time

road ——

Figure A.2: Trajectories of vehicles in a cellular automaton model of road traffic [67]:
formation of an upstream running shock wave and the secession of a second shock wave
from the original one.

e If a driver at site i sees the next vehicle at site ¢ + j, with j < v, she reduces

its speed to j — 1.

e The velocity of each vehicle (if greater than zero) is decreased by one with

probability p (“dawdling”).

e Each vehicle is advanced by v sites.

Since each vehicle in a CA model hops with some probability, depending on the
distance to the car in front, it is also regarded as a car-following model. However, in
this dissertation we refer to car-following models as being deterministic, and ignore
CA models.

Monte-Carlo simulations of the model show a transition from laminar flow to start-
stop-waves with increasing vehicle density, as observed in real freeway traffic. Figure
A .2 presents how a shock wave might arise from an initial homogenous unstable flow.
Here, the upper bound of the car density in the clusters is obviously given by the
length of the cell.

The advantage of these models clearly lies in their quick realization of numerical
simulations. Real time online simulations can be carried out, and compared to their
continuous analogues [67]. However, the problem of these models is the difficulty of

extracting analytical results due to the discretization of space and time, which is one
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major reason why we consider only the deterministic continuum and car-following

models in this dissertation.

139



Appendix B

Inappropriate Inverse

Transformation

In chapter 3, we derived the inverse transformation successfully in two different ways.
In the following, a method will be presented by which the inverse transformation
cannot be derived. At first sight, it may seem to be counterproductive to concentrate
on an example that does not succeed. However, it gives even more insight into the
relation between the traffic parameters headway and density.

Analogous to the integral representation Eq. (3.2.3) of the headway, another obvious

approach to produce the inverse transformation might be

21/ p(a.1) p(art)
/ 1/b(a, £)da’ = / 1/b(z + v, t)dy = 1. (B.0.1)
x 0

By proceeding as in chapter 3, one obtains an asymptotic series or, in other words,

another differential equation

11 /1 1 /1
1 Ny Ly g B.0.2
b 22 (b)w+6p3 <b>zz ’ (502

but this time for b instead of p. However, this method fails for different reasons. One
is that the conservation of cars is not fulfilled any longer, and since this equation is
dropped by going from the continuum model with two coupled equations to the car-
following model with one governing equation, this violation leads to inconsistencies

in the discrete model.
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Total differentiation of Eq. (B.0.1) with respect to time yields

0 = /x e {@] t dz’ (B.0.3)

" {"‘ " 6” b(a . 1/p) ”béc)

T o, vEt1/p) ()
-/ [bw)Ld T et 1/p)  ba) (B.04)

_ /;H/p{[ﬁ]ﬁ [%L’}da". (B.0.5)

From the transformation Eq. (3.2.10), we know that 1/b might be written as
1

~ — 4+ —=4... B.0.6
5~ Pt ot o T (B.0.6)

Moreover, the integral must vanish for any function b(z, t)
1 v

3| Gl -0 (B0.1

Inserting Eq. (B.0.6) and taking the conservation of cars Eq. (3.1.4) into account,

Eq. (B.0.7) reads
Pz Pzx Pz Pzx
rrz , Pzz oL, e =0 B.0.8
<2p+6p3)t+ [v (2p+6p3)L ’ (B.08)

which does not hold for every function p(z,t). Therefore, given the transformation
Eq. (3.2.10) that relates car-following models to their continuum counterparts, the
ansatz Eq. (B.0.1) leads to inconsistencies and is, for this reason, not a proper
method for deriving the inverse transformation.

Moreover, there is the second argument that this method does not succeed. Equation

(B.0.2) is equivalent to Eq. (3.2.5), if one considers the substitutions
b(z,t) — 1/p(x,t), (B.0.9)
p(z,t) — 1/b(z,t), (B.0.10)

so effectively making use of bp ~ 1. As in chapter 3, we proceed to gain an expression
for p in terms of b, b, and b;;, and straightforward calculation gives

P=1 " " 6 + higher order terms. (B.0.11)

This differs obviously from the inverse transformation (3.8.10), which was derived
from the original asymptotic series Eq. (3.2.5). In accordance, it can be shown that
under this inappropriate inverse transformation, the continuous Bando model does
not transform into its original discrete analogue. It now includes higher order terms

in b, and by,

o = alVa(a) vl — 2 T (h),, (B.0.12)

The problem that arises here is how to interpret the spatial derivatives of the head-

way (chapter 4).
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Differential Delay Equations

In this appendix, a brief introduction into the theory of differential delay equations
(DDE) is given. We restrict ourselves to the discussion of ordinary DDE (ODDE)
rather than partial DDE (PDDE).

A first-order ordinary differential equation (ODE) usually takes the form

u'(t) = f(t, ult)), (C.0.1)

and describes the rate of change of a variable u, depending on its current state and
time. However, in many systems in nature, the current process depends on the
history of the system. Examples are nuclear reactions, control systems, population
growth, economic growth, epidemiology and traffic flow [18, 20, 59, 85, 86].

The evolution of the current state wu(t) may then depend on the state
u(t — T) a time T ago, a number of different states at different times in the past
u(t—T1), u(t—Ts), ..., u(t—T), or even on the states during a time interval [t — T'; ¢]
where T € [0; 00).

In the first case, the governing equation might now read
' (t) = f(t,u(t),u(t —T)), (C.0.2)

where T is called the time delay. In traffic flow modelling this term corresponds to
the driver’s reaction time. Even though it is the simplest ODDE, it already reveals
interesting phenomena.

Before we discuss those, it should be mentioned that single time delay as in Eq. (C.0.2)
and multiple time delay (numerous linear terms u(t —T1), u(t —T3), ..., u(t —T,) on

the right hand side of Eq. (C.0.2)), are special cases of a time interval dependency

u'(t)=f <t,u(t), / K(t,tu(t —t) dt’) ) (C.0.3)
by specifying the kernel to be

K(t,t) = a16(t' = T1) + a6(t' — T2) + ... + and(t' — Tp,). (C.0.4)
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However, the kernel often takes the form of a Gaussian function.
To illustrate the basic difference between ODDE and ODE, we consider the example

W)= —u(t-T) , T= g (C.0.5)

For the initial condition u(0) = 0, we can find infinitely many oscillatory solutions
u(t) = Asin(t) , A€R. (C.0.6)

This is different from the corresponding ODE (T' = 0), which shows exponential
decay
u(t) = Aexp(—t) , A€R, (C.0.7)

and does not provide any non-trivial function which satisfies the initial condition.

We see that the initial condition of an ODDE must be given on a history window
[to — T';to], where T is the time delay, in order to determine the solution uniquely.
In general, the dependency on those initial conditions is crucial, and its analysis is
usually quite demanding. Moreover, we can expect the phase space to contain more
function types, some of them with fundamentally different behaviour. One way to

illustrate this is Eq. (C.0.5) for arbitrary T. The characteristic equation reads
A+ exp(—AT) =0, (C.0.8)

which, in general, has an infinite amount of roots and, hence, an infinite amount
of independent solutions, whereas for T' = 0, there is only the exponential function
(C.0.7) as a fundamental solution.

Therefore, one should not try to expand the term u(t — T') as a finite Taylor series

N

ut-1) =3 S (C.09)

nl ot

n=0

of order N. This leads to an ODE of the same order, which can only have N
independent solutions.

This example shows that a Taylor series approach usually fails, and it might be
an analogous differential equation for very small time delays only. This has to be
be discussed for every single problem [20]. However, if autonomous cruise control
systems (ACCS) reduce the time delay of their algorithms to a margin, they might
as well be approximated by a Taylor series. This shows the basic research that has
to be done before implementing ACCS [41].

Apart from the characteristic equation of linear ODDE with constant coefficients,
there is no recipe to solve ODDE. In general, it is much harder to determine these
solutions than for the corresponding ODE. In particular, nonlinear terms as in a

Bando model with explicit time delay

Un(t + T) = a[tanh(b, — 2) + tanh(2) — v,], (C.0.10)
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complicate the analysis. However, the asymptotic behaviour can be extracted for

some problems [20].

Time delay seems to be a natural part of traffic flow due to the driver’s retarded
reaction towards traffic situations. In deterministic models, the delay has to be
regarded as an averaged quantity. However, a major question is why it has not yet
been included in continuum models. The discussion of analogous models in chapter
4 clearly shows that it should be done in order to incorporate the microscopic driver

behaviour. This certainly opens up a new field of research.
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Numerical Techniques

The simulations in this dissertation were carried out in C. It turns out that the pro-
grams run faster this way than for standard integration programs such as MATLAB.
Where possible, appropriate calculations were supported by MAPLE. The stability

analysis of chapter 3 is one example.

Both car-following and continuum models can be simulated in real time, if dimen-
sions are incorporated. In the first case, real time refers to a certain number of cars
on the road, whereas for the latter to a stretch of road of a certain length.

The equivalent of a few thousand cars was considered in this work, typically N =
2000. For an average headway of about 25m, this equals a stretch of road about
50km long. The large number of cars is necessary to investigate the long-time be-
haviour of traffic for any given initial condition, such as a jump in headway (chapter
5) or a pulse (section 3.7).

There are two main advantages of car-following simulations over continuum mod-
elling. Firstly, every car can be simulated individually with its own characteristic
features (section 5.7). Secondly, rapidly changing headways in space do not cause
problems during integration, because only discrete variables are involved in the gov-
erning equations. This differs from the continuum models, which typically contain
spatial derivatives such as p; and vz,. When discretized, the accuracy of their ap-
proximations decreases with increasing spatial step-size and spatial gradients.
However, for the simulations considered, a fourth-order Runge-Kutta algo-
rithm proved to be sufficiently accurate for both the car-following models and the
travelling wave analysis of the continuum models. Here, car-following models in
particular are integrated simply and efficiently. Nevertheless, the parameters of in-
tegration such as step-sizes of time and space have to be matched for every single

problem.

The dimensionless Bando model was integrated with a fourth-order Runge-Kutta
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Appendix D: Numerical Techniques

algorithm of step-size At = 0.005. Large time-steps can lead to crossings of car
trajectories, and smaller time-steps to unacceptably long CPU times.

On a 233MHz Pentium, a program for the simulation of 1000 cars over a time
t = 1000 takes about 15 minutes. About 500 of those runs were required to obtain
the phase diagram Fig. 5.2.

For the dimensional model of section 3.5, the step-size was ¢ = 0.01s. This enables
real-time simulations of up to N = 1000 cars, where the number N depends obvi-
ously on the available computer power.

The need for numerical simulations is shown when the critical headways be.;; of
Bando waves are determined. In this work, this value and the corresponding head-
way of the Bando wave by, were only obtained numerically, either by running a
car-following simulation or by integrating the travelling wave solution Eq. (3.4.12).
Decreasing the downstream headway, b.r;; is given by the latter method, when in-
tegration breaks down. by, is the global minimum of the oscillatory solution on the

verge of integration breakdown [15].

The advantage of continuum models is apparent, when travelling waves are anal-
ysed. The integration of Eq. (3.4.12), for example, takes only 5 seconds. In con-
trast, travelling waves in the car-following model can only be obtained by running
the corresponding program for a sufficiently long time (Fig. 3.4). On the other hand,
the shooting method of the continuum model is very sensitive towards the spa-
This

complicates the determination of the correct travelling wave solution and the head-

tial step-size, initial speed gradient v,] and density gradient p,|

T—>—00 T—>—00"

ways beri¢ and byp,. Moreover, the instability of the travelling wave occurs only in
the car-following model. The shooting method delivers solutions without a linear or

nonlinear stability criterion.

In the numerical simulations of the car-following model, the cars were represented
by a linked list. This way, the insertion of a vehicle at an on-ramp becomes a rather
straightforward task. In addition, it saves time compared with an array structure,
in which the upstream cars have to be moved down the array every time a car enters

the lane.
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Several parts of this dissertation have been published as follows:

e Chapter 3:

Continuum approach to car-following models,
Peter Berg, Anthony Mason and Andrew Woods,
Physical Review E, Volume 61, 2000

and

Relating car-following and continuum models of road traffic,
Peter Berg and Andrew Woods,

In: Traffic and Granular Flow ’99,

D. Helbing, H.J. Herrmann, M. Schreckenberg and D.E. Wolf,
Springer, 2000

e Chapter 5:

Traveling waves of an optimal-velocity model of freeway traffic,
Peter Berg and Andrew Woods,
Physical Review E, Volume 63, 2001

and

Travelling waves in a linearly stable, optimal-velocity model of
road traffic,

Peter Berg and Andrew Woods,

In: Progress in Industrial Mathematics at ECMI 2000,

M. Anile, V. Capasso and A. Greco,

Springer, 2001

e Chapter 6:

On-ramp simulations and solitary waves of a car-following model,
Peter Berg and Andrew Woods,
Physical Review E, Volume 64, 2001
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