1) We consider front propagation for the modified Fisher equation $u_{t}=$ $u_{x x}+u\left(1-u^{2}\right)$. We want to study the system as a propagating front so we let $u(x, t)=u(x-c t)$ where c is the front propagation speed. Then with $\xi=x-c t$,

$$
\begin{equation*}
\frac{d^{2} u}{d \xi^{2}}+c \frac{d u}{d \xi}+u\left(1-u^{2}\right)=0 \tag{1}
\end{equation*}
$$

As in the text, we can see that we have the two-dimensional dynamical system

$$
\begin{array}{r}
\frac{d u}{d \xi}=v \tag{2}\\
\frac{d v}{d \xi}=-u\left(1-u^{2}\right)-c v
\end{array}
$$

Then we have fixed points at $\left(u^{*}, v^{*}\right)=(0,0)$ and $\left(u^{*}, v^{*}\right)=(\pm 1,0)$. The Jacobian matrix is

$$
J=\left(\begin{array}{cc}
0 & 1 \tag{3}\\
3 u^{2}-1 & -c
\end{array}\right)
$$

The trace is always $-c$. For $\left(u^{*}, v^{*}\right)=(\pm 1,0)$, the determinant is -2 , so we have a saddle point. For $\left(u^{*}, v^{*}\right)=(0,0)$, the determinant is 1 . If $u(x, t)$ describe a density, it must be positive and, as described in the text (at the end of 8.1.3), we rule out $c<2$, so the fixed point is a stable node.

For the stability, we write $u(x, t)=U(x-c t)+\delta u(x, t)$, with $U(\xi)$ a solution. Linearizing in δu, we obtain the PDE

$$
\begin{equation*}
\frac{\partial \delta u}{\partial t}=\frac{\partial^{2} \delta u}{\partial x^{2}}+\left(1-3 U^{2}\right) \delta u \tag{4}
\end{equation*}
$$

We shift to a moving frame defined by $\xi=x-c t$ and $s=t$. We then get the equation (using eqs. (8.31) and (8.32) from the notes):

$$
\begin{equation*}
\frac{\partial \delta u}{\partial s}=\frac{\partial^{2} \delta u}{\partial \xi^{2}}+\left(1-3 U(\xi)^{2}\right) \delta u \tag{5}
\end{equation*}
$$

This is a linear and autonomous PDE and solutions can be written in the form $u(\xi, s)=f(\xi) \exp (-\lambda s)$, where

$$
\begin{equation*}
f^{\prime \prime}+c f^{\prime}+\left(\lambda+1-3 U^{2}\right) f=0 \tag{6}
\end{equation*}
$$

To get rid of f^{\prime}, we right $f(\xi)=\psi(\xi) \exp \left(-\frac{c \xi}{2}\right)$ to obtain $-\frac{d^{2} \psi}{d \xi^{2}}+W(\xi) \psi=$ $\lambda \psi$, where $W(\xi)=3 U^{2}(\xi)+\frac{c^{2}}{4}-1$ is the 'potential'. Then if $|c|>2$ we get all positive eigenvalues and otherwise get negative eigenvalues. Therefore solutions with $|c|<2$ are unstable.

2 For the predator-prey model given by

$$
\begin{array}{r}
u_{t}=D u_{x x}-u v \\
v_{t}=\lambda D v_{x x}+u v \tag{7}
\end{array}
$$

If we examine the possibility of a traveling front solution, with $u(x, t)=$ $u(x-c t)$ and $v(x, t)=v(x-c t)$, we obtain the coupled ode system:

$$
\begin{align*}
D u^{\prime \prime}+c u^{\prime}-u v & =0 \\
\lambda D v^{\prime \prime}+c v^{\prime}+u v & =0 \tag{8}
\end{align*}
$$

We now have a four dimensional system:

$$
\begin{array}{r}
\frac{d u}{d \xi}=z \\
D \frac{d z}{d \xi}=-c z+u v \\
\frac{d v}{d \xi}=w \tag{9}\\
\lambda D \frac{d w}{d \xi}=-c w-u v
\end{array}
$$

We then get a Jacobian that looks like (in the order $u, v, z, w):$

$$
J=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{10}\\
0 & 0 & 0 & 1 \\
v / D & u / D & -c / D & 0 \\
-v / D \lambda & -u / D \lambda & 0 & -c / D \lambda
\end{array}\right)
$$

We observe that fixed points exist at $(0,0,0,0),\left(m_{1}, 0,0,0\right)$, and $\left(0, m_{2}, 0,0\right)$, with m_{1}, m_{2} arbitrary. First examine the Jacobian evaluated at $(0,0,0,0)$:

$$
J_{(0,0,0,0)}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{11}\\
0 & 0 & 0 & 1 \\
0 & 0 & -c / D & 0 \\
0 & 0 & 0 & -c / D \lambda
\end{array}\right)
$$

The eigenvalues are 0 (double), $-c / D$, and $-c / D L$. For the other two, we let $m_{1}=m_{2}=K$, because that's our boundary condition. This gives Jacobians of:

$$
J_{(K, 0,0,0)}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{12}\\
0 & 0 & 0 & 1 \\
0 & K / D & -c / D & 0 \\
0 & -K / D \lambda & 0 & -c / D \lambda
\end{array}\right)
$$

and

$$
J_{(0, K, 0,0)}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \tag{13}\\
0 & 0 & 0 & 1 \\
K / D & 0 & -c / D & 0 \\
-K / D \lambda & 0 & 0 & -c / D \lambda
\end{array}\right)
$$

Using MATLAB, Mathematica, or by hand, we find that the eigenvalues for the $(K, 0,0,0)$ are $0,-c / D$ and $\frac{-c \pm \sqrt{c^{2}+4 K D}}{2 D}$. For $(0, K, 0,0)$ we similarly find $0,-c / D \lambda$ and $\frac{-c \pm \sqrt{c^{2}-4 D K \lambda}}{2 D \lambda}$.

We have three special cases: where $D \approx 0$, where $\lambda \approx 0$, and where D is very small but λ is very large such that $D \lambda \approx O(1)$. First examine when $D \approx 0$. Then we have a 2 D system:

$$
\begin{gather*}
c \frac{d u}{d \xi}=u v \\
c \frac{d v}{d \xi}=-u v \tag{14}
\end{gather*}
$$

with Jacobian

$$
\left(\begin{array}{cc}
v / c & u / c \tag{15}\\
-v / c & -u / c
\end{array}\right)
$$

with eigenvalues 0 and $(\mathrm{u}-\mathrm{v}) / \mathrm{c}$ and fixed points at $(K, 0)$ and $(0, K)$.
For $\lambda \approx 0$, we have a 3 D system

$$
\begin{array}{r}
\frac{d u}{d \xi}=z \\
D \frac{d z}{d \xi}=-c z+u v \tag{16}\\
c \frac{d v}{d \xi}=-u v
\end{array}
$$

with eigenvalues 0 and $\frac{1}{2 c D}\left(u D+z c^{2} \pm \sqrt{u^{2} D^{2}-2 u D z c^{2}+c^{4} z^{2}+4 D v c^{2}}\right)$ with fixed points at $(0, K, 0),(K, 0,0)$, and $(0,0,0)$.

Finally, we have the system where $\lambda D \approx O(1)$ when $D \approx 0$. This system is

$$
\begin{array}{r}
c \frac{d u}{d \xi}=u v \\
\frac{d v}{d \xi}=w \tag{17}\\
\lambda D \frac{d w}{d \xi}=-c w-u v
\end{array}
$$

with all the same fixed points as before.

3 We compute the "growth rate" η for the Brusselator within a purely linearized treatment of the problem. First, compute η at fixed $Q(\epsilon=0)=$ $a / \sqrt{D_{u} D_{v}}$. We have the coupled RDE's:

$$
\begin{array}{r}
u_{t}=D_{u} u_{x x}+f(u, v)=D_{u} u_{x x}+a-(1+b) u+u^{2} v \\
v_{t}=D_{v} v_{x x}+g(u, v)=D_{v} v_{x x}+b u-u^{2} v \tag{18}
\end{array}
$$

The fixed point occurs at $\left(u^{*}, v^{*}\right)=(a, b / a)$. Linearizing and Fourierdecomposing, we get
$J=\left(\begin{array}{cc}f_{u}-q^{2} D_{u} & f_{v} \\ g_{v} & g_{u}-q^{2} D_{v}\end{array}\right)=\left(\begin{array}{cc}-(1+b)-2 u v-q^{2} D_{u} & u^{2} \\ b-2 u v & u^{2}-q^{2} D_{v}\end{array}\right)=\left(\begin{array}{cc}b-1-q^{2} D_{u} & a^{2} \\ -b & -a^{2}-q^{2} D_{v}\end{array}\right)$
Let $q= \pm Q$, so $Q^{2}=\frac{D_{u} g_{v}+D_{v} f_{u}}{2 D_{u} D_{v}}=-\frac{D_{u} a^{2}+D_{v}(b-1)}{2 D_{u} D_{v}}$. Additionally, note that the trace and determinant of the above Jacobian are $\operatorname{Tr}=b-1-a^{2}-q^{2}\left(D_{u}+D_{v}\right)$ and $D=-b q^{2} D_{v}+a^{2}+q^{2} D_{v}+q^{2} a^{2} D_{u}+q^{4} D_{u} D_{v}$, respectively.

Now let's examine the growth rate at a fixed Q. Then $D_{u} Q^{2}=c, D_{v} Q^{2}=$ a / c, and $(c+1)^{2}=b_{T}$. With $\epsilon=b-b_{T}$, we can simplify our trace and determinant to $\operatorname{Tr}=\left(1+\frac{1}{c}\right)\left(c^{2}-a^{2}\right)+\epsilon$ and $D=-\frac{\epsilon a^{2}}{c}$. Then

$$
\begin{array}{r}
\frac{T^{2}}{4}-D= \\
\frac{\left((1+1 / c)\left(c^{2}-a^{2}\right)\right)^{2}}{4}+\frac{\epsilon}{2}\left(c^{2}+c-a^{2}-\frac{a^{2}}{c}\right)+\epsilon a^{2} / c+\epsilon^{2} / 4 \tag{20}\\
=\left(\frac{(1+1 / c)\left(c^{2}-a^{2}\right)}{2}\right)^{2}+\frac{\epsilon}{2}\left(c^{2}(1+1 / c)-a^{2}(1-1 / c)\right) \\
=\left(\frac{(1+1 / c)\left(c^{2}-a^{2}\right)}{2}\right)^{2}\left(1+\frac{\epsilon}{2} \frac{4\left(c^{2}(1+1 / c)-a^{2}(1-1 / c)\right)}{\left((1+1 / c)\left(c^{2}-a^{2}\right)\right)^{2}}\right)
\end{array}
$$

so

$$
\begin{equation*}
\sqrt{\frac{T^{2}}{4}-D} \approx \frac{(1+1 / c)\left(c^{2}-a^{2}\right)}{2}+\frac{\epsilon}{2} \frac{\left(c^{2}(1+1 / c)-a^{2}(1-1 / c)\right)}{(1+1 / c)\left(c^{2}-a^{2}\right)} \tag{21}
\end{equation*}
$$

So the (-) eigenvalue gives us

$$
\begin{equation*}
-\frac{T}{2}+\sqrt{\frac{T^{2}}{4}-D}=\frac{\epsilon a^{2}}{(c+1)\left(a^{2}-c^{2}\right)}=\frac{a^{2}\left(b-b_{T}\right)}{(c+1)\left(a^{2}-c^{2}\right)} \tag{22}
\end{equation*}
$$

which is what the notes have for (9.67).
Now we allow Q to vary. Then

$$
\begin{equation*}
Q^{2}(\epsilon)=\frac{D_{u} g_{v}+D_{v} f_{u}}{2 D_{v} D_{u}}=\frac{-a^{2} D_{u}+D_{v}(b-1)}{2 D_{u} D_{v}} \tag{23}
\end{equation*}
$$

So $D_{u} Q^{2}=c+\epsilon / 2$ and $D_{v} Q^{2}=\frac{a^{2}}{c}(1+\epsilon / 2 c)$. Then

$$
\begin{gather*}
\operatorname{Tr}=(1+1 / c)\left(c^{2}-a^{2}\right)+\frac{\epsilon}{2}\left(1-a^{2} / c^{2}\right) \tag{24}\\
D=\left((c+1)^{2}+\epsilon-1-c-\frac{\epsilon}{2}\right)\left(-a^{2}-\frac{a^{2}}{c}\left(1+\frac{\epsilon}{2 c}\right)\right)+a^{2}\left(\epsilon+(c+1)^{2}\right)=-\frac{a^{2} \epsilon}{c}-\frac{a^{2} \epsilon^{2}}{4 c^{2}} \tag{25}
\end{gather*}
$$

If this all gets plugged in to determine the eigenvalues, we get

$$
\begin{array}{r}
-\frac{T}{2}-\sqrt{T / 4-D} \approx-\frac{1}{2}(1+1 / c)\left(c^{2}-a^{2}\right)- \\
\frac{1}{2}(1+1 / c)\left(a^{2}-c^{2}\right)\left(1+\frac{\epsilon}{2} \frac{\left(1-a^{2} / c^{2}\right)(1+1 / c)\left(c^{2}-a^{2}\right)+4 a^{2} / c}{\left((1+1 / c)\left(c^{2}-a^{2}\right)\right)^{2}}\right)-\frac{\epsilon}{4}\left(1-a^{2} / c^{2}\right) \\
=\frac{a^{2}\left(b-b_{T}\right)}{(c+1)\left(a^{2}-c^{2}\right)} \tag{26}
\end{array}
$$

4

We consider the real Ginsburg-Landau equation, $\psi_{t}=\mu \psi+\psi_{x x}-|\psi|^{2} \psi$, with ψ a complex field. We investigate the stability of static solutions of the form $\psi(x)=\sqrt{\mu-Q^{2}} e^{i Q x}$. We first write $\psi(x, t)=\sqrt{\mu-Q^{2}} e^{i Q x}+\eta(x) e^{\lambda t}=$ $\xi(x)+\eta(x) e^{\lambda t}$. Then by only keeping terms that are linear in η we get

$$
\begin{equation*}
\lambda \eta=\mu \eta+\eta_{x x}-2|\xi|^{2} \eta-\xi^{2} \eta^{*} \tag{27}
\end{equation*}
$$

We can define η by its expansion

$$
\begin{equation*}
\eta=a_{0} e^{i Q x}+\sum\left(a_{k} e^{i(Q+k) x}+b_{k} e^{i(Q-k) x}\right) \tag{28}
\end{equation*}
$$

Then

$$
\lambda_{k}\binom{a_{k}}{b_{k}}=\left(\begin{array}{cc}
\mu-(Q+k)^{2}-2\left(\mu-Q^{2}\right) & -\left(\mu-Q^{2}\right) \tag{29}\\
-\left(\mu-Q^{2}\right) & \mu-(Q-k)^{2}-2\left(\mu-Q^{2}\right)
\end{array}\right)\binom{a_{k}}{b_{k}}
$$

which gives us $\lambda_{k \pm}=-\left(\mu-Q^{2}\right)-k^{2} \pm \sqrt{(2 Q k)^{2}+\left(\mu-Q^{2}\right)^{2}}$. To make $\xi(x)$ stable, we require the eigenvalue λ_{k+} to be negative, which gives us our Eckhaus instability.

