
1) We consider front propagation for the modified Fisher equation ut =
uxx + u(1− u2). We want to study the system as a propagating front so we let
u(x, t) = u(x−ct) where c is the front propagation speed. Then with ξ = x−ct,

d2u

dξ2
+ c

du

dξ
+ u(1− u2) = 0 (1)

As in the text, we can see that we have the two-dimensional dynamical
system

du

dξ
= v

dv

dξ
= −u(1− u2)− cv

(2)

Then we have fixed points at (u∗, v∗) = (0, 0) and (u∗, v∗) = (±1, 0). The
Jacobian matrix is

J =
(

0 1
3u2 − 1 −c

)
(3)

The trace is always −c. For (u∗, v∗) = (±1, 0), the determinant is -2, so
we have a saddle point. For (u∗, v∗) = (0, 0), the determinant is 1. If u(x, t)
describe a density, it must be positive and, as described in the text (at the end
of 8.1.3) , we rule out c < 2, so the fixed point is a stable node.

For the stability, we write u(x, t) = U(x−ct)+δu(x, t), with U(ξ) a solution.
Linearizing in δu, we obtain the PDE

∂δu

∂t
=
∂2δu

∂x2
+ (1− 3U2)δu (4)

We shift to a moving frame defined by ξ = x − ct and s = t. We then get
the equation (using eqs. (8.31) and (8.32) from the notes):

∂δu

∂s
=
∂2δu

∂ξ2
+ (1− 3U(ξ)2)δu (5)

This is a linear and autonomous PDE and solutions can be written in the
form u(ξ, s) = f(ξ)exp(−λs), where

f ′′ + cf ′ + (λ+ 1− 3U2)f = 0 (6)

To get rid of f ′, we right f(ξ) = ψ(ξ)exp(− cξ2 ) to obtain −d
2ψ
dξ2 +W (ξ)ψ =

λψ, where W (ξ) = 3U2(ξ) + c2

4 − 1 is the ’potential’. Then if |c| > 2 we get all
positive eigenvalues and otherwise get negative eigenvalues. Therefore solutions
with |c| < 2 are unstable.

2 For the predator-prey model given by
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ut = Duxx − uv
vt = λDvxx + uv

(7)

If we examine the possibility of a traveling front solution, with u(x, t) =
u(x− ct) and v(x, t) = v(x− ct), we obtain the coupled ode system:

Du′′ + cu′ − uv = 0
λDv′′ + cv′ + uv = 0

(8)

We now have a four dimensional system:

du

dξ
= z

D
dz

dξ
= −cz + uv

dv

dξ
= w

λD
dw

dξ
= −cw − uv

(9)

We then get a Jacobian that looks like (in the order u, v, z, w):

J =


0 0 1 0
0 0 0 1

v/D u/D −c/D 0
−v/Dλ −u/Dλ 0 −c/Dλ

 (10)

We observe that fixed points exist at (0, 0, 0, 0), (m1, 0, 0, 0), and (0,m2, 0, 0),
with m1,m2 arbitrary. First examine the Jacobian evaluated at (0, 0, 0, 0):

J(0,0,0,0) =


0 0 1 0
0 0 0 1
0 0 −c/D 0
0 0 0 −c/Dλ

 (11)

The eigenvalues are 0 (double), −c/D, and −c/DL. For the other two, we
let m1 = m2 = K, because that’s our boundary condition. This gives Jacobians
of:

J(K,0,0,0) =


0 0 1 0
0 0 0 1
0 K/D −c/D 0
0 −K/Dλ 0 −c/Dλ

 (12)

and
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J(0,K,0,0) =


0 0 1 0
0 0 0 1

K/D 0 −c/D 0
−K/Dλ 0 0 −c/Dλ

 (13)

Using MATLAB, Mathematica, or by hand, we find that the eigenvalues for
the (K, 0, 0, 0) are 0,−c/D and −c±

√
c2+4KD
2D . For (0,K, 0, 0) we similarly find

0,−c/Dλ and −c±
√
c2−4DKλ
2Dλ .

We have three special cases: where D ≈ 0, where λ ≈ 0, and where D is
very small but λ is very large such that Dλ ≈ O(1). First examine when D ≈ 0.
Then we have a 2D system:

c
du

dξ
= uv

c
dv

dξ
= −uv

(14)

with Jacobian (
v/c u/c
−v/c −u/c

)
(15)

with eigenvalues 0 and (u - v)/c and fixed points at (K, 0) and (0,K).
For λ ≈ 0, we have a 3D system

du

dξ
= z

D
dz

dξ
= −cz + uv

c
dv

dξ
= −uv

(16)

with eigenvalues 0 and 1
2cD (uD + zc2 ±

√
u2D2 − 2uDzc2 + c4z2 + 4Dvc2)

with fixed points at (0,K, 0), (K, 0, 0), and (0, 0, 0).
Finally, we have the system where λD ≈ O(1) when D ≈ 0. This system is

c
du

dξ
= uv

dv

dξ
= w

λD
dw

dξ
= −cw − uv

(17)

with all the same fixed points as before.
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3 We compute the ”growth rate” η for the Brusselator within a purely
linearized treatment of the problem. First, compute η at fixed Q(ε = 0) =
a/
√
DuDv. We have the coupled RDE’s:

ut = Duuxx + f(u, v) = Duuxx + a− (1 + b)u+ u2v

vt = Dvvxx + g(u, v) = Dvvxx + bu− u2v
(18)

The fixed point occurs at (u∗, v∗) = (a, b/a). Linearizing and Fourier-
decomposing, we get

J =
(
fu − q2Du fv

gv gu − q2Dv

)
=
(
−(1 + b)− 2uv − q2Du u2

b− 2uv u2 − q2Dv

)
=
(
b− 1− q2Du a2

−b −a2 − q2Dv

)
(19)

Let q = ±Q, so Q2 = Dugv+Dvfu

2DuDv
= −Dua

2+Dv(b−1)
2DuDv

. Additionally, note that
the trace and determinant of the above Jacobian are Tr = b−1−a2−q2(Du+Dv)
and D = −bq2Dv + a2 + q2Dv + q2a2Du + q4DuDv, respectively.

Now let’s examine the growth rate at a fixed Q. Then DuQ
2 = c, DvQ

2 =
a/c, and (c + 1)2 = bT . With ε = b − bT , we can simplify our trace and
determinant to Tr = (1 + 1

c )(c2 − a2) + ε and D = − εa
2

c . Then

T 2

4
−D =

((1 + 1/c)(c2 − a2))2

4
+
ε

2
(c2 + c− a2 − a2

c
) + εa2/c+ ε2/4

= (
(1 + 1/c)(c2 − a2)

2
)2 +

ε

2
(c2(1 + 1/c)− a2(1− 1/c))

= (
(1 + 1/c)(c2 − a2)

2
)2(1 +

ε

2
4(c2(1 + 1/c)− a2(1− 1/c))

((1 + 1/c)(c2 − a2))2
)

(20)

so√
T 2

4
−D ≈ (1 + 1/c)(c2 − a2)

2
+
ε

2
(c2(1 + 1/c)− a2(1− 1/c))

(1 + 1/c)(c2 − a2)
(21)

So the (-) eigenvalue gives us

−T
2

+

√
T 2

4
−D =

εa2

(c+ 1)(a2 − c2)
=

a2(b− bT )
(c+ 1)(a2 − c2)

(22)

which is what the notes have for (9.67).
Now we allow Q to vary. Then

Q2(ε) =
Dugv +Dvfu

2DvDu
=
−a2Du +Dv(b− 1)

2DuDv
(23)
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So DuQ
2 = c+ ε/2 and DvQ

2 = a2

c (1 + ε/2c). Then

Tr = (1 + 1/c)(c2 − a2) +
ε

2
(1− a2/c2) (24)

D = ((c+1)2 +ε−1−c− ε
2

)(−a2− a
2

c
(1+

ε

2c
))+a2(ε+(c+1)2) = −a

2ε

c
− a

2ε2

4c2
(25)

If this all gets plugged in to determine the eigenvalues, we get

−T
2
−
√
T/4−D ≈ −1

2
(1 + 1/c)(c2 − a2)−

1
2

(1 + 1/c)(a2 − c2)(1 +
ε

2
(1− a2/c2)(1 + 1/c)(c2 − a2) + 4a2/c

((1 + 1/c)(c2 − a2))2
)− ε

4
(1− a2/c2)

=
a2(b− bT )

(c+ 1)(a2 − c2)
(26)

4
We consider the real Ginsburg-Landau equation, ψt = µψ + ψxx − |ψ|2ψ,

with ψ a complex field. We investigate the stability of static solutions of the
form ψ(x) =

√
µ−Q2eiQx. We first write ψ(x, t) =

√
µ−Q2eiQx + η(x)eλt =

ξ(x) + η(x)eλt. Then by only keeping terms that are linear in η we get

λη = µη + ηxx − 2|ξ|2η − ξ2η∗ (27)

We can define η by its expansion

η = a0e
iQx +

∑
(akei(Q+k)x + bke

i(Q−k)x) (28)

Then

λk

(
ak
bk

)
=
(
µ− (Q+ k)2 − 2(µ−Q2) −(µ−Q2)

−(µ−Q2) µ− (Q− k)2 − 2(µ−Q2)

)(
ak
bk

)
(29)

which gives us λk± = −(µ − Q2) − k2 ±
√

(2Qk)2 + (µ−Q2)2. To make
ξ(x) stable, we require the eigenvalue λk+ to be negative, which gives us our
Eckhaus instability.
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