PHYSICS 221A : NONLINEAR DYNAMICS HW ASSIGNMENT \#3

(1) Riccati equations are nonlinear nonautonomous ODEs of the form

$$
\frac{d x}{d t}=a(t) x^{2}+b(t) x+c(t) .
$$

(a) Make a change of dependent variable from $x(t)$ to $y(t)$, where

$$
x(t)=-\frac{1}{a(t)} \frac{\dot{y}(t)}{y(t)},
$$

which is known as the Riccati transformation. Show that $y(t)$ obeys a linear nonautonomous second order ODE. Write the formal solution to this ODE by writing it in the form $\dot{\boldsymbol{\varphi}}=M(t) \boldsymbol{\varphi}$ and expressing the solution in terms of a time ordered exponential.
(b) Solve the Riccati equation

$$
\dot{x}=e^{t} x^{2}-x+e^{-t} .
$$

(c) Suppose we have a solution $X(t)$ to the Riccati equation. Show that by writing $x(t)=X(t)+u(t)$ we obtain the solvable Bernoulli equation

$$
\dot{u}=a(t) u^{2}+(b(t)+2 a(t) X(t)) u
$$

which can then be solved using the method from problem (5) of homework set \#1.
(d) Consider the Riccati equation

$$
\dot{x}=x^{2}-t x+1 .
$$

By inspection, we have that $x(t)=t$ is a solution. Using the method of part (c) above, find a general solution for arbitrary $x(0) \equiv x_{0}$.
(2) Consider the equation

$$
\ddot{x}+x=\epsilon x^{5}
$$

with $\epsilon \ll 1$.
(a) Develop a two term straightforward expansion for the solution and discuss its uniformity.
(b) Using the Poincaré-Lindstedt method, find a uniformly valid expansion to first order.
(c) Using the multiple time scale method, find a uniformly valid expansion to first order.
(3) Consider the equation

$$
\ddot{x}+\epsilon \dot{x}^{3}+x=0
$$

with $\epsilon \ll 1$. Using the multiple time scale method, find a uniformly valid expansion to first order.
(4) Analyze the forced oscillator

$$
\ddot{x}+x=\epsilon\left(\dot{x}-\frac{1}{3} \dot{x}^{3}\right)+\epsilon f_{0} \cos (t+\epsilon \nu t)
$$

using the discussion in $\S 4.3 .1$ and $\S 4.3 .2$ of the notes as a template.
(5) Consider two coupled nonlinear oscillators, with

$$
\begin{align*}
\frac{d \boldsymbol{\varphi}_{1}}{d t} & =\boldsymbol{V}_{1}\left(\boldsymbol{\varphi}_{1}\right)+\epsilon \boldsymbol{F}_{1}\left(\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}\right) \tag{1}\\
\frac{d \boldsymbol{\varphi}_{2}}{d t} & =\boldsymbol{V}_{2}\left(\boldsymbol{\varphi}_{2}\right)+\epsilon \boldsymbol{F}_{2}\left(\boldsymbol{\varphi}_{1}, \boldsymbol{\varphi}_{2}\right) . \tag{2}
\end{align*}
$$

Assume that for $\epsilon=0$ each of the oscillators exhibits at least one stable limit cycle. Assume further that the natural frequencies $\omega_{1,2}$ of their respective limit cycles are close to resonance. That is, assume that the detuning

$$
\begin{equation*}
\nu=m \omega_{1}-n \omega_{2} \tag{3}
\end{equation*}
$$

is small for some integer values of m and n.
(a) Using the phase representation and isochrones for each oscillator, show that to lowest order one may write

$$
\begin{align*}
\frac{d \phi_{1}}{d t} & =\omega_{1}+\epsilon Q_{1}\left(\phi_{1}, \phi_{2}\right) \tag{4}\\
\frac{d \phi_{2}}{d t} & =\omega_{2}+\epsilon Q_{2}\left(\phi_{1}, \phi_{2}\right) . \tag{5}
\end{align*}
$$

(b) Expand the functions $Q_{1,2}\left(\phi_{1}, \phi_{2}\right)$ in a double Fourier series in their arguments. What terms satisfy the (near) resonance condition?
(c) Keeping only the terms which are nearly resonant, define $\psi=m \phi_{1}-n \phi_{2}$ and derive an ODE describing the behavior of ψ. Analyze this ODE and classify its fixed points. What is the condition for synchronization of the two nonlinear oscillators?

