PHYSICS 221A : NONLINEAR DYNAMICS HW ASSIGNMENT \#2

(1) In an ODE, the functions and their derivatives are all evaluated at the same time t. In a delay differential equation, this is no longer the case, and different terms may be evaluated at different values of the time t. Consider the delay equation

$$
y^{\prime}(t)+a y(t-1)=0
$$

subject to the boundary conditions

$$
y(t)=y_{0} \quad \text { when } \quad-1 \leq t \leq 0
$$

(a) Solve using the method of the Laplace transform:

$$
\begin{aligned}
& Y(s)=\int_{0}^{\infty} d t y(t) e^{-s t} \\
& y(t)=\int_{c-i \infty}^{c+i \infty} \frac{d s}{2 \pi i} Y(s) e^{s t}
\end{aligned}
$$

Recall that the contour for the inverse transform lies to the right of all singularities of the integrand. Find an analytic expression for $Y(s)$. Show that your result can be Taylor expanded to yield

$$
Y(s)=\frac{y_{0}}{s}+y_{0} \sum_{n=1}^{\infty}(-a)^{n} e^{-(n-1) s} s^{-(n+1)}
$$

Performing the inverse transform, show that

$$
y(t)=y_{0} \sum_{n=0}^{[t]+1} \frac{(-a)^{n}}{n!}(t-n+1)^{n}
$$

where $[t]$ is the greatest integer less than or equal to t. Hint: You will close in the LHP or RHP depending on the value of $[t]$ in relation to $n-1$.
(b) Solve by the following alternate method. For $t \in[0,1]$ we have

$$
y^{\prime}(t)+a y_{0}=0,
$$

with $y(0)=y_{0}$. The solution is then

$$
y(t)=y_{0}(1-a t) \quad t \in[0,1] .
$$

On the interval $t \in[1,2]$, then, we have

$$
y^{\prime}(t)+a y_{0}[1-a(t-1)],
$$

with $y(1)=y_{0}(1-a)$. The solution on this interval is then

$$
y(t)=y_{0}\left[1-a t+\frac{1}{2} a^{2}(t-1)^{2}\right] \quad t \in[1,2] .
$$

Proceeding thusly, show that you obtain the same solution as in part (a).
(c) Dispensing with the boundary condition, and assuming $t \in \mathbb{R}$, find at least one periodic solution. Show that periodicity requires that a be fine tuned to a specific value or set of values.
(2) Numerically integrate the system

$$
\begin{aligned}
& \dot{r}=r\left(1-r^{2}\right)+\lambda r \cos \theta \\
& \dot{\theta}=1
\end{aligned}
$$

with $0<\lambda<1$, and show that any initial condition lying between the concentric circles of radii $\sqrt{1 \pm \lambda}$ approaches a closed limit cycle in the long time limit. Choose whatever value of λ suits your taste.
(3) For the Lotka-Volterra system

$$
\begin{aligned}
& \dot{x}=x(r-x-k y) \\
& \dot{y}=y\left(1-y-k^{\prime} x\right),
\end{aligned}
$$

discussed in §3.4.2 of the notes, sketch the phase diagram in the upper right quadrant of the (k, k^{\prime}) plane for fixed r. That is, label the regions of the plane by their fixed point structure.
(4) In $\S 4.1 .2$ of the notes, the Poincaré-Lindstedt method was applied to ODEs of the form

$$
\ddot{x}+\Omega_{0}^{2} x=\epsilon h(x) .
$$

Consider the more general equation,

$$
\ddot{x}+\Omega_{0}^{2} x=\epsilon h(x, \dot{x}) .
$$

Generalize the discussion in $\S 4.1 .2$ for such equations, and exhibit explicitly the equations of the resulting hierarchy through order ϵ^{3}. Apply this method to lowest nontrivial order to the van der Pol oscillator,

$$
\ddot{x}+\epsilon\left(x^{2}-1\right) \dot{x}+x=0,
$$

by taking $h(x, \dot{x})=\left(1-x^{2}\right) \dot{x}$.

