



Ashby Ave

### Transportation: Chapter 8



1

5/9/11

# Interesting trivia: bicycle is most efficient known way to transport anything!

- Bike 3200 mi/million Btu (granola)!
- Walking: 1900 mi/million Btu
- Bus: 600 mi/million Btu
- Train: 300 mi/million Btu
- Car: 280 mi/million Btu
- Plane: 170 mi/million Btu
- Human on bicycle is more efficient than salmon swimming or albatross flying (all more efficient than any land animal walking)
- Million Btu  $\sim$  8 gallons of gas

| Physics of cars                                                                 |
|---------------------------------------------------------------------------------|
| Four forces are important in understanding cars                                 |
| Remember: Energy = Force x distance (more force=> more energy)                  |
| - Acceleration force: $F_{acceleration} = m a$                                  |
| <ul> <li>m is mass, a is acceleration (a = Delta v/ Delta t)</li> </ul>         |
| - Climbing hills: $F_{hill} = m g s$ (potential energy)                         |
| • s= slope of hill, g = 9.8 m/s <sup>2</sup> (gravity)                          |
| - $F_{acc}=0$ and $F_{hill}=0$ going on level at constant speed                 |
| <ul> <li>Rolling resistance: F<sub>roll</sub> = C<sub>roll</sub> m v</li> </ul> |
| • Cr coefficient of rolling: depends on type of tires, wheel bearings, etc      |
| • m is mass of car, v is speed of car, faster means more friction               |
| • Force in lbs                                                                  |
| - Aerodynamic drag force: $F_{ad} = C_D A_f v^2 / 370$                          |
| • C <sub>D</sub> drag coefficient                                               |
| • $A_f = $ frontal area of car or truck (in ft <sup>2</sup> )                   |
| • v is speed (MUST BE IN mph), Force in lbs                                     |

| Drag coe                    | efficients (c <sub>D</sub> ) |
|-----------------------------|------------------------------|
| • Square flat plate         | 1.17                         |
| Ordinary truck              | 0.7                          |
| • 2003 Hummer H2            | 0.57                         |
| Streamlined truck           | 0.55                         |
| • 1981 Cadillac             | 0.55                         |
| • Porche 928                | 0.45                         |
| Jaguar XKE                  | 0.4                          |
| Ford Escort                 | 0.39                         |
| Camero/Datsun 280Z          | 0.35                         |
| • 1992 Ford Taurus          | 0.32                         |
| • 1997 Audi A8/Lotus Europa | 0.29                         |
| • 2005 Toyota Prius         | 0.25                         |
| • VW research vehicle       | 0.15                         |
| • Boeing 747                | 0.031                        |
| • Teardrop                  | 0.030                        |
|                             |                              |

### Example: calculate mpg of car at various speeds

- Consider Jaguar XKE going 75mph (area 28ft<sup>2</sup>, c<sub>D</sub>=.4)
  - $F_{drag} = (.4)(28)(75^2)/370 = 170$  lbs of force from wind drag
  - How about at 50mph?  $F_{drag} = 75$  lbs (less than half as much!)
  - How about at 100mph? 75lbs  $(100mph/50mph)^2 = 300lbs$
- Energy used is W = F d (efficiency)
  - Efficiency of cars: Carnot and waste heat in motor, drive train, tires on road (anything that gets hot wastes energy!)
  - Efficiency about 15% (can range from 10%-20%)
  - So energy used per mile for drag force only (at 75mph) is
    - E=(170 lbs)(5280ft)/.15 = 6 million ft lb/mile

- Now total force is sum:  $F_{tot} = F_{acc} + F_{hill} + F_{roll} + F_{drag}$ 
  - On level ground at constant speed only  $F_{roll}$  and  $F_{drag}$  contribute
- Can estimate the miles per gallon; see how to design cars to get better mileage
- Suppose car weighs 3200 lb,  $c_D=0.35$ , Af = 28 ft<sup>2</sup>, driving level freeway at 75 mph. Efficiency of motor/drive-train/etc. is 18%
  - Ftot =  $F_{roll} + F_{drag} = 0.01 \text{ m v} + c_D A_f v^2/370 \text{ (in lbs)}$
  - Problem with m in English units:  $m = w/g = lbs/32 \text{ ft/s}^2$
  - Ftot = (.01)(3200/32)(75) + (.35)(28)(75<sup>2</sup>)/370 = 75 + 149 = 224lb
    Most of force needed to fight wind resistance
  - Energy in one mile:  $E/mile = (5280 ft)(224 lb)/.18 = 6.5 x 10^6 ft lb/mi$
  - Convert to gallons of gas per mile (1.36J/1ft lb)(gal gas/1.32x10<sup>8</sup>J) = .067 gal/mi. Take one over this to find 1/.067 = 14.9 mi/gal (Not too far off real answer)
  - Note if going 100mph, F<sub>roll</sub> goes up to 75lb (100/75) = 100lb, while F<sub>drag</sub> goes up to 149 lb (100/75)<sup>2</sup> = 264lb, so Ftot goes up to 364lb, and gas mileage goes down to 14.9mpg (224lb/364lb) = 9.1 mpg (See why speed limit was reduced to 55mph during 1973 oil crisis!)











## Improvements in both fuel economy and safety are possible

- Fuel economy improvement is cost-effective (Greene 2007, EEA 2006)...
  - technologies exist to raise fuel economy 50%, at current gas prices (\$3.00/gallon)
  - includes some weight reduction in only heaviest pickups
  - does not include new powertrains (hybrid, plug-in hybrid, HCCI, fuel cells) or fuels (diesel, low-carbon fuels)
  - more technologies become cost-effective as gas price increases
- ...but weight reduction is easiest, and least-costly, step to increase fuel economy
- Advanced materials (high-strength steel, advanced composites) may allow large weight reductions, and fuel economy improvement, without any sacrifice in safety
- Safety can be improved using new technologies, with little impact on weight or fuel economy
  - electronic stability control
  - better seat belts
  - stronger roofs
  - vehicle-to-vehicle communication

|   | Definition of risk                                                                                            |
|---|---------------------------------------------------------------------------------------------------------------|
| • | "Risk": driver fatalities per year, per million vehicles registered<br>as of Jan 2005                         |
|   | <ul> <li>driver fatalities from NHTSA Fatality Analysis Reporting<br/>System (FARS)</li> </ul>                |
|   | • FARS includes many details on all US traffic fatalities                                                     |
|   | - registered vehicles as denominator, or measure of "exposure"                                                |
| • | Because it is based on actual fatalities, our definition of risk                                              |
|   | incorporates:                                                                                                 |
|   | <ul> <li>vehicle design</li> </ul>                                                                            |
|   | <ul> <li>crash avoidance (sometimes measured by consumer groups)</li> </ul>                                   |
|   | <ul> <li>crashworthiness (typically measured in artificial lab crash tests)</li> </ul>                        |
|   | <ul> <li>driver characteristics and behavior</li> </ul>                                                       |
|   | <ul> <li>road environment and conditions</li> </ul>                                                           |
| • | Therefore, all risks are "as driven"; as a result, our risks don't correlate well with lab crash test results |

#### Two types of risk

- Risk to drivers of subject vehicle
  - from all types of crashes (total, and separately for two-vehicle crashes, one-vehicle crashes, rollovers, etc.)
- Risk imposed by subject vehicle on drivers of other vehicles (all types and ages)
  - often called vehicle "aggressivity" or "compatibility"
  - because from two-vehicle crashes only, risks to other drivers tend to be lower than risks to drivers
- Combined risk is the sum of the two







### Effect of vehicle design on risk

- High risk to drivers of pickups and SUVs from their propensity to roll over
  - NHTSA's static stability factor (SSF): tw/2h
    - tw = track width; h = height of center of gravity
  - average car SSF is 1.40, 12% chance of rollover in a crash
  - average SUV SSF is 1.15, 28% chance of rollover
- High risk to others from pickups and SUVs (and to a lesser extent minivans) associated with chassis stiffness and height
  - car driver fatality rate is 5x higher when struck in side by SUV (4x higher when struck by pickup) than when struck in side by another car
  - SUVs are built on pickup frames, whose rails often override car bumpers and sills and puncture car bodies
- Rollover risk in SUVs, especially crossovers, and risk to others from pickups are declining



| Motor vehicle | 42,000 |
|---------------|--------|
| Falls         | 16,000 |
| Drowning      | 3,400  |
| Fires         | 3,200  |
| Electrocution | 430    |
| Lightning     | 75     |

| Automobiles                                                                   | 1.5 (2002)                   |
|-------------------------------------------------------------------------------|------------------------------|
| Automobiles on rural interstate highways                                      | 1.5 (2002)<br>1.2 (2002)     |
| Automobiles on urban interstate highways                                      | 0.6 (2002)                   |
| Bus                                                                           | 0.5 (2002)                   |
| Train                                                                         | 2.0 (2003)                   |
| Airline                                                                       | 0.000 (2002)<br>0.313 (2003) |
| Motorcycle                                                                    | 34 (2002)                    |
| Horses<br>( $26 \times 10^6$ horses, $1.3 \times 10^{10}$ miles, 3850 deaths) | 30 (1909)                    |





#### Future cars: Hydrogen

#### • What about hydrogen cars?

 H is most common element in Universe! (75%!), but on Earth does not exist in pure state (lighter than He, rises and escapes atmosphere into space)

- Lots of in in  $H_2O$ , but takes energy to get it out; can also get from hydrocarbons like methane ( $CH_4$ ), etc.
- Once have it out burns very clean  $(H + O_2 \rightarrow H_2O)$ ; no nasty pollution
- Is very concentrated form of energy
  - Hydrogen has 38 kWh/kg (remember 1 gallon of gasoline has 36.6 kWh)
  - Gasoline has 13 kWh/kg
  - Flywheel has 0.9 kWh/kg
  - Lead acid battery has 0.03 kWh/kg (see why electric cars have problems!)
- In gaseous forms takes lots of volume.
  - 1 kg with energy of 1 gal gas takes  $\sim$ 1000 gallons of volume
- Gasoline is always used in heat engine (Carnot efficiency limited), but Hydrogen can be used in fuel cell: Direct conversion of H to electricity. Can get efficiency of 65%-80%, much better than gas engine

|   | Future cars: Hydrogen                                                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Hydrogen cars continued                                                                                                                                                                                |
|   | <ul> <li>Hydrogen is very dangerous; burns and explodes much more easily than gasoline</li> </ul>                                                                                                      |
|   | <ul> <li>e.g. nat gas explodes only when between 5%-15% concentration in<br/>air, while Hydrogen explodes at any concentration between 4%-75%;<br/>explosion is also 15 times more powerful</li> </ul> |
|   | • Hydrogen is also invisible when it burns!                                                                                                                                                            |
| • | Conclusions:                                                                                                                                                                                           |
|   | <ul> <li>Hydrogen not source of energy, more like a battery, and even with<br/>fuel cell not more energy efficient than Prius!</li> </ul>                                                              |
|   | • Total efficiency is 30%-40% to make electricity from coal/nat gas                                                                                                                                    |
|   | • Times 65% to make H gas from $H_2O$                                                                                                                                                                  |
|   | • Times 65%-80% to turn H back into electricity                                                                                                                                                        |
|   | • Times 90%-95% electric motor in car                                                                                                                                                                  |
|   | • Total is efficiency is 11%-20%, about same as a regular car!                                                                                                                                         |
|   | • But far more expensive                                                                                                                                                                               |

#### Future cars: Hydrogen

- However, if H gas is produced from solar electricity rather than coal or nat gas, then reduces use of fossil fuel and produces no CO<sub>2</sub>
- Could be good in future, but would require completely new infrastructure for transporting and fueling H gas (or liquid H which would take even more energy to produce)
- Currently fuel cells used in space craft but way too expensive for cars (e.g. \$1 million)
- Hydrogen probably not going to be very important in near future

#### Future cars: Flex cars/Ethanol

- We talked about ethanol before: Study by Farrell, Kammen, et el., Science, 311, 506 (2006)
- Ethanol made from corn, sugar cane, etc. Contains 2/3 energy content of gasoline (24 kWh/gal vs. 36.6 kWh/gal)
- Compared 6 studies of U.S. corn based ethanol:
  - These found NET energy of -6 kWh/gal to 11 kWh/gal; Farrell, et al. corrected these to common assumption and got a range -4 kWh/gal to +9 kWh/gal. Their best estimate was 4 kWh/gal
  - That is, out of 24 kWh in one gallon of ethanol, 20 kWh, all but 4 kWh, went into producing it.
    - Net energy Ratio is therefore 24/20 = 1.2 for ethanol
  - For gasoline, about 7% of energy in gallon for production
    - Ratio is therefore 36.3/(.07x36.6) =14.2
  - Worst is that 2 out of 6 studies showed net energy loss!
- Conclusion: Corn ethanol only exists because of govt. subsidies and regulations: not good for environment, etc.

#### Future cars: other Bio fuels

- Ethanol from sugar cane
  - Much higher energy ratio's since more energy produced and less energy used in production. Brazil has replaced nearly all cars with ethanol cars, and has greatly reduced oil imports.
  - What will be affect on rainforests and CO<sub>2</sub>?; jury still out; probably not good
- Celluosic ethanol: from switchgrass or wood chips, etc.
  - Big money going into developing (BP/Monsanto)
  - So far not practical, but could have much better energy ratio than corn ethanol, if chemistry problems are solved
- Convert vegetable oils into bio-diesel fuel?
  - Too soon to tell; very popular in Europe where there are big govt.
     subsidies. Net energy ratio can be better than corn ethanol, but net CO<sub>2</sub> may be worse than just burning gas. Plus land used for food is displaced causing food prices to increase.





| Mode                      | Btu (10 <sup>12</sup> )  | Percent |
|---------------------------|--------------------------|---------|
| Automobiles               | 9,326                    | 35.4    |
| Motorcycles               | 24                       | 0.1     |
| Buses                     | 191                      | 0.7     |
| Light trucks              | 6,842                    | 26.0    |
| Other trucks              | 5,027                    | 19.1    |
| Air                       | 2,213                    | 8.4     |
| Water                     | 1,185                    | 4.5     |
| Pipeline                  | 935                      | 3.5     |
| Rail                      | 621                      | 2.4     |
| Total $(4.7 \times 10^9)$ | 26,364<br>bbl petroleum) |         |

| Passenger Transportation       | Passenger-Mile/10 <sup>6</sup> B |
|--------------------------------|----------------------------------|
| Bicycle (8 mph)                | 3200                             |
| Walking (3 mph)                | 1900                             |
| Bus, intercity                 | 1100                             |
| Bus, transit                   | 240                              |
| Automobile                     | 280                              |
| Train                          | 210-370                          |
| Airplane, commercial passenger | 270                              |
| Freight Transportation         | Ton-Mile/10 <sup>6</sup> Btu     |
| Ocean oil tanker               | 12,500                           |
| Pipelines                      | 3300                             |
| Railroad                       | 2900                             |
| Waterway                       | 2100                             |
| Truck                          | 385                              |
| Aircraft                       | 32                               |