

UCSD Physics 12		
Overview		
 U.S. Energy usage increased exponentially from 1850-1975 (~ 4.3%/ year) 		
• Early 1970 projections were U.S. needed 160 QBtu/year by 2000, but reality was only 100 QBtu/year. What happened?		
• 1973: Arabs organized to <i>reduce</i> oil production.		
 Cost \$0.25 bbl to get oil out of ground & price was \$2/bbl 		
 Very quickly price went to \$12/bbl => factor of 5-6 increase 		
– U.S. introduced legislation		
CAFE (Corporate Average Fuel Efficiency)		
• Insulation standards for houses/refrigerators (R values)		
• 55 mph freeway speed limit and many other conservation standards		
 Thought would need massive nuclear expansion, but conservation worked much better than expected 		
• 1978: 2nd "oil crisis", price doubled to \$24/bbl		
 stayed ~ \$30/bbl until a few years ago (Still ~ 1\$/bbl to get oil: => Texans got rich) 		
• Estimate aggressive conservation now could bring us to 60		
QBtu/year; Conservation cheapest way out of energy crisis!		

UCSD Physics 12	
Focus on household energy	
• 22% energy in households, 21% transportation, 33% industrial, 18% commerical	
• In U.S. space heating is number one use: 47% of household energy	
Insulation! Insulation!	
If insulation was perfect no energy would be needed! Heat on a cold day once and then energy conservation would keep the air warm! Is this ideal possible?	
• Typical U.S. house (not San Diego!) in cold season	
- 17% heat lost through walls	
– 16% heat lost through windows	
– 21% lost through basement walls and floor	
– 5% lost through ceiling	
– 3% lost through doors	

UCSD Physics 12				
Heat loss equation				
• Heat energy lost in one "season" is:				
$Q = 24 A degree-days/R_{tot}$				
– Q is energy in Btu				
- A is area of wall or window or ceiling, etc. in ft^2				
- R _{tot} is "R" factor or insulation factor, depends on material and thickness				
- Degree-days = SUM over season of $(65^{\circ}F$ - outside temp)				
• Most important thing is where you live (how cold it is in winter)				
– Miami FL: 170 degree-days (in one year)				
 Los Angeles 2000 degree-days 				
 San Francisco 3000 degree-days 				
- NY,NY: 5000 degree-days				
– Denver, CO 6000 degree-days				
 Madison, WI 7300 degree-days 				
 Barrow Alaska 20,000 degree-days 				

UCSD	Physics 12			
R values are listed at Home Depot, etc.				
 Formula means big R-value => less heat loss 				
 More area => more heat loss 				
 More degree days => more heat loss 				
• Good thing about R-values is they add: $R_{tot} = R_1 + R_2 + R_3$, etc				
• Example R values:				
- Glass window, 1/8 inch:	0.03			
 Drywall, 1/2 inch: 	0.45			
– Plywood, 3/4 inch:	0.95			
 Concrete (per inch): 	0.08			
 Brick (per inch): 	0.2			
– Fiber glass ins (per inch):	3.7			
– Urea foam (per inch)	5.25			
 Insulating board: 	2.06			
 Inside air layer 	0.68			
 Outside air layer 	0.17			
• $Q = 24 A degree-days/R_{tot}$				

UCSD	Physics 12
	Example: Heat loss through wall in Reno
•	Assume wall is 20ft by 8 ft
•	w/o insulation: wall is made of insulating board, 3.5 inch empty gap and drywall
	 R_{tot} = outside air layer (.17) + insulating board (2.06) + inside air layer (.68) + another inside air layer (.68) + drywall (.45) + inside air layer (.68) = 4.72
	- Q = 24 x (20 ft * 8 ft) * 6000 degree-days/4.7 = 4.9 million Btu
•	with insulation: add fiber glass insulation in 3.5 inch gap
	- $R_{tot} = R_{tot}(above) + 3.5inch *3.7 - 2(.68) = 4.7 + 13 = 16.3$
	 Q(insulation) = 1.41 million Btu => save 3.5 million Btu for this one wall!
	 With natural gas at ~ \$13/MBtu => save \$13 x 3.5 = \$45.50 each year by insulating this one wall.
٠	Note glass wall would have R=.17+.03+.68=0.88 => 26 million Btu or cost \$388/year in heating!
•	Note: similar for air conditioning required for cooling when hot

UCSD	Physics 12
	Insulation only helps if heat can't run out through open doors, windows or cracks
•	Called air infiltration: typical house has air infiltration of once per hour => need to reheat entire house each hour, gives about 1/3 of total heat loss
•	Weather stripping leaky doors, windows, etc; close chimney flue can reduce greatly
•	BUT if too good: radioactive Radon gas and carbon monoxide can build up; especially in basements
•	Also note, new furnaces should be $> 90\%$ efficient, old ones more like 50%; they put 1/2 of heat out vent
•	Finally, lowering inside thermostat helps; Formula says lowering temp by n 0 F reduces heating cost by a factor of n/(T _{inside} -T _{outside})

UCSD	Physics 12
Household appliances in	order of energy use
• Electric Water heater	~ \$550/year
• Central air conditioner	~ \$335/year
• Refrigerator	~ \$116/year
• Clothes washer (inc hot water)	~ \$112/year
• Dishwasher (inc hot water)	\sim \$96/year
Clothes dryer	\sim \$92/year
• Lights	\sim \$88/year
• Electric Range	\sim \$70/year
Microwave oven	~ \$18/year
Television	\sim \$16/year
• Home computer	~ \$13/year
Coffee maker	\sim \$10/year
• Stereo and radio	~ \$8/year

UCSD	Physics 12		
Recycling			
•	Aluminum cans take ~7100 Btu to make, ~2500 Btu if recycled		
•	Glass bottles used once take ~3900 Btu, recycled 2400 Btu, refilled ~600Btu		
•	Recycling works for Al since Al costs ~\$130/lb => most Al is recycled; glass and paper not so valuable so much less recycled		
•	 Paper vs. Plastic? How to tell? Simple rule of thumb: pick the one that weighs less! e.g. if paper cup weighs more than plastic cup probably means it used more resources and is worse for the environment! 		
	- (exception: toxic substances (lead, poisons, etc.))		

