

UCSD

Physics 12

But First: the Importance of Efficiency

- You almost always waste some of your energy, the amount that you get is determined by the efficiency:
- eff = (useful energy)/(total energy)
- Efficiency is always a number between 0 (all energy wasted) and 1 (no energy wasted) (i.e. 0% to 100%)
- Examples:
- Electric motors have efficiency around 90% (eff=0.9)
- Photosynthesis has about 1% efficiency (eff~0.01)
- Electric power plants have efficiencies between 25% and 40\%
- Increasing efficiency is same as getting more energy!
- Why not increase all efficiencies to 100% ?
- Physics limit for all heat engines: Max eff $=1-\mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{H}}$

Heat can be useful

- Normally heat is the end-product of the flow/ transformation of energy
- remember examples from lecture
- heat regarded as waste: as useless end result
- Sometimes heat is what we want, though
- hot water, cooking, space heating
- In this case efficiency can be near 100% !
- Heat can also be coerced into performing
"useful" (e.g., mechanical) work
- this is called a "heat engine"

Heat Engine Concept

- Any time a temperature difference exists between two bodies, there is a potential for heat flow
- Examples:
- heat flows out of a hot pot of soup
- heat flows into a cold drink
- heat flows from the hot sand into your feet
- Rate of heat flow depends on nature of contact and thermal conductivity of materials
- If we're clever, we can channel some of this flow of energy into mechanical work

Heat \rightarrow Work

- We can see examples of heat energy producing other types of energy
- Air over a hot car roof is lofted, gaining kinetic energy
- That same air also gains gravitational potential energy
- All of our wind is driven by temperature differences
- Our electricity generation depends mostly on temperature differences: no steam in turbine would circulate if everything was at the same temperature; however hydroelectric plants don't use temp differences, instead use potential energy

UCSD

Figure 3.4 A diagram of a fuel-burning electric power plant. Here a river provides cooling water to the condenser, but lake water or a cooling tower could serve the same purpose.

Heat flows from T_{h} to T_{c}, turning turbine along the way

Heat Engine Nomenclature

- The symbols we use to describe the heat engine are:
- T_{h} is the temperature of the hot object
- T_{c} is the temperature of the cold object
- $\Delta T=T_{h}-T_{c}$ is the temperature difference
$-\Delta Q_{h}$ is the amount of heat that flows out of the hot body
- ΔQ_{c} is the amount of heat flowing into the cold body
- ΔW is the amount of "useful" mechanical work
- ΔS_{h} is the change in entropy of the hot body
$-\Delta S_{c}$ is the change in entropy of the cold body
$-\Delta S_{t o t}$ is the total change in entropy (entire system)
$-\Delta E$ is the entire amount of energy involved in the flow

What's this Entropy business?

- Entropy is a measure of disorder (and actually quantifiable on an atom-by-atom basis)
- Ice has low entropy, liquid water has more, steam has a lot

lowenergy, low T configuration

high energy, high T configuration

The Laws of Thermodynamics

1. Energy is conserved
2. Total system entropy, S, can never decrease

$$
\Delta S_{\text {tot }}>=0
$$

3. As the temperature goes to zero, the entropy approaches a constant value-this value is zero for a perfect crystal lattice

- The concept of the "total system" is very important: entropy can decrease locally, but it must increase elsewhere by at least as much
- no energy flows into or out of the "total system": if it does, there's more to the system than you thought

9

Quantifying heat energy

- We've already seen many examples of quantifying heat
- 1 Calorie is the heat energy associated with raising 1 kg (1 liter) of water $1^{\circ} \mathrm{C}$
- In general, $\Delta Q=c_{p} m \Delta T$, where c_{p} is the heat capacity
- We need to also point out that a change in heat energy accompanies a change in entropy:

$$
\Delta Q=T \Delta S
$$

- Adding heat increases entropy
- more energy goes into random motions \rightarrow more randomness (entropy)

How much work can be extracted from heat?

UCSD
 Let's crank up the efficiency

Let's extract a lot of work, and deliver very little heat to the sink

In fact, let's demand 100\% efficiency by sending no heat to the sink: all converted to useful work

Not so fast...

- The second law of thermodynamics imposes a constraint on this reckless attitude: total entropy must never decrease
- The entropy of the source goes down (heat extracted), and the entropy of the sink goes up (heat added): remember that $\Delta Q=T \Delta S$
- The gain in entropy in the sink must at least balance the loss of entropy in the source

$$
\begin{aligned}
\Delta S_{\text {tot }}= & \Delta S_{h}+\Delta S_{c}=-\Delta Q_{h} / T_{h}+\Delta Q_{c} / T_{c} \geq 0 \\
& \Delta Q_{c} \geq\left(T_{c} / T_{h}\right) \Delta Q_{h} \text { sets a minimum on } \Delta Q_{c}
\end{aligned}
$$

What does this entropy limit mean?

- $\Delta W=\Delta Q_{h}-\Delta Q_{c}$, so ΔW can only be as big as the minimum ΔQ_{c} will allow $\Delta W_{\text {max }}=\Delta Q_{h}-\Delta Q_{c, \text { min }}=\Delta Q_{h}-\Delta Q_{h}\left(T_{c} / T_{h}\right)=\Delta Q_{h}\left(1-T_{c} / T_{h}\right)$
- So the maximum efficiency is:
maximum efficiency $=\Delta W_{\max } / \Delta Q_{h}=\left(1-T_{c} / T_{h}\right)=\left(T_{h}-T_{c}\right) / T_{h}$
this and similar formulas must have the temperature in Kelvin
(THIS IS CALLED THE CARNOT EFFICIENCY

$$
\begin{aligned}
& \text { Carnot Eff }=\left(T_{h}-T_{c}\right) / T_{h} \\
& =1-T_{h} / T_{c} .
\end{aligned}
$$

- So perfect efficiency is only possible if T_{c} is zero (in ${ }^{\circ} \mathrm{K}$)
- In general, this is not true
- As $T_{c} \rightarrow T_{h}$, the efficiency drops to zero: no work can be extracted; there must be a temperature DIFFERENCE

Examples of Maximum Efficiency

- A coal fire burning at $825^{\circ} \mathrm{K}$ delivers heat energy to a reservoir at $300^{\circ} \mathrm{K}$
- max efficiency is $(825-300) / 825=525 / 825=64 \%$
- this power station can not possibly achieve a higher efficiency based on these temperatures
- A car engine running at $400^{\circ} \mathrm{K}$ delivers heat energy to the ambient $290^{\circ} \mathrm{K}$ air
- max efficiency is $(400-290) / 400=110 / 400=27.5 \%$
- not too far from reality

Example efficiencies of power plants

Figure 3.5 Typical efficiency of an electric power plant for converting chemical energy in the fuel into electric energy. The best new plants now achieve nearly 40%. (Source: Delbert W. Devins, Energy: Its Physical Impact on the Environment, John Wiley and Sons, New York, 1982; and U. S. Energy Information Administration, Electric Power Annual, 1996, Volume I.)

Power plants these days (almost all of which are heat-engines) typically get no better than 33% overall efficiency

Types of heat engines

- External combustion engine
- Internal combustion engine (gas/diesel)
- Gas turbine (aka jet engine)
- rocket

UCSD
 Physics 12
 What to do with the waste heat $\left(\Delta Q_{c}\right)$?
 - One option: use it for space-heating locally (called co-generation)

Figure 3.13 A small cogeneration plant that uses the combustion of natural gas to drive a gas turbine coupled to an electric generator. The hot exhaust gases boil water to steam for use in space heating and cooling. (Source: Exxon Corporation.)

UCSD

Physics 12

Overall efficiency greatly enhanced by cogeneration

Table 3.1 Cogeneration Plant, University of Colorado, Boulder

Fuel	Natural gas
Engine	2 Mitsubishi industrial gas turbines
Generating capacity	32 MW,
Capital investment	$\$ 41,000,000$
Construction started	1990
System lifetime	40 to 50 years
Estimated payback time	15 years
Average exported electric power	8 MW
Cost of electricity produced	$\$ 0.024 / \mathrm{kWh}$
Price of electricity sold	$\$ 0.047 / \mathrm{kWh}$
Annual income from electricity sales	$\$ 1,600,000$
Cost of electricity from public utility	$\$ 0.068 / \mathrm{kWh}$
Efficiency for producing electricity	34%
Overall efficiency	70%

UCSD
 Heat Pumps

Physics 12

Heat Pumps provide a means to very efficiently move heat around, and work both in the winter and the summer

Heat Pump Diagram

Figure 3.12 An electrically driven heat pump using Freon as a working fluid. In principle, the system becomes an air conditioner if the fluid flow direction is reversed. In practice, the reversal of function is more complex.

Heat Pump/Refrigerator Efficiencies

- Can work through same sort of logic as before to see that:
- heat pump efficiency is: $T_{h} /\left(T_{h}-T_{c}\right)=T_{h} / \Delta T \quad$ in ${ }^{\circ} \mathrm{K}$
- refrigerator efficiency is: $T_{c} /\left(T_{h}-T_{c}\right)=T_{c} / \Delta T \quad$ in ${ }^{\circ} \mathrm{K}$
- Note that heat pumps and refrigerators are most efficient for small temperature differences
- hard on heat pumps in very cold climates
- hard on refrigerators in hot settings

Example Efficiencies

- A heat pump maintaining $20^{\circ} \mathrm{C}$ when it is $-5^{\circ} \mathrm{C}$ outside has a maximum possible efficiency of:

$$
293 / 25=11.72
$$

- note that this means you can get almost 12 times the heat energy than you are supplying in the form of work!
- this factor is called the C.O.P. (coefficient of performance)
- A freezer maintaining $-5^{\circ} \mathrm{C}$ in a $20^{\circ} \mathrm{C}$ room has a maximum possible efficiency of:
$268 / 25=10.72$
- called EER (energy efficiency ratio)

Example Labels (U.S. \& Canada)

ENERGYCUIDE Hixine

Compare the Energy Efficiency of this Air Conditioner with Others Before You Buy.

∇

500

 axery mine

 The wiphet hato Mortonas

UCSD
 Participation Question
 (write on piece of paper with
 name and hand in)

I. A windmill puts out 1000 Watts of electrical power. It is used to run a motor at 90% efficiency which lifts an elevator system which has 80% efficiency? How much energy is finally given to lifting after 10 seconds of operating?
A. 7200 Joules
B. I 0000 Joules
C. 720 Watts
D. None of the above
E. Can't be calculated from these numbers

