

UCSD	Physics 12
	But First: the Importance of Efficiency
•	You almost always waste some of your energy, the amount that you get is determined by the efficiency:
•	eff = (useful energy)/(total energy)
•	Efficiency is always a number between 0 (all energy wasted) and 1 (no energy wasted) (i.e. 0% to 100%)
•	Examples:
	- Electric motors have efficiency around 90% (eff = 0.9)
	– Photosynthesis has about 1% efficiency (eff~0.01)
	 Electric power plants have efficiencies between 25% and 40%
•	Increasing efficiency is same as getting more energy!
•	Why not increase all efficiencies to 100%?
	– Physics limit for all heat engines: Max eff = $1 - T_C/T_H$

UCSD	Physic	s 12
	Heat can be useful	
•	Normally heat is the end-product of the flow/ transformation of energy – remember examples from lecture – heat regarded as waste: as useless end result Sometimes heat is what we <i>want</i> , though – hot water, cooking, space heating – In this case efficiency can be near 100%!	
•	Heat can <i>also</i> be coerced into performing "useful" (e.g., mechanical) work – this is called a "heat engine"	3

UCSD Phy.	sics 12		
Heat Engine Concept			
 Any time a <i>temperature difference</i> exists between two bodies, there is a <i>potential</i> for <i>heat flow</i> Examples: heat flows out of a hot pot of soup heat flows into a cold drink heat flows from the hot sand into your feet Rate of heat flow depends on nature of contact a <i>thermal conductivity</i> of materials If we're clever, we can channel some of this flow of energy into mechanical work 	nd w		
	4		

UCSD	Physi	cs 12
	What does this entropy limit mean?	
•	$\Delta W = \Delta Q_h - \Delta Q_c$, so ΔW can only be as big as the minimum ΔQ_c will allow	
•	$\Delta W_{max} = \Delta Q_h - \Delta Q_{c,min} = \Delta Q_h - \Delta Q_h (T_c/T_h) = \Delta Q_h (1 - T_c/T_h)$ So the maximum efficiency is: maximum efficiency = $\Delta W_{max}/\Delta Q_h = (1 - T_c/T_h) = (T_h - T_c)/T_h$	
	this and similar formulas <i>must</i> have the temperature in Kelvin (THIS IS CALLED THE CARNOT EFFICIENCY	
	Carnot Eff = $(T_h - T_c)/T_h$	
	$= 1 - T_h / T_c$	
•	So perfect efficiency is only possible if T_c is zero (in °K) - In general, this is not true	
•	As $T_c \rightarrow T_h$, the efficiency drops to zero: no work can be extracted; there must be a temperature DIFFERENCE	14

UCSD	Physics 12				
Overall efficiency greatly enhanced by cogeneration					
Table 3.1 Cogeneration Plant, University of Colorado, Boulder					
Fuel Engine Generating capacity Capital investment Construction started System lifetime Estimated payback time Average exported electric power Cost of electricity produced Price of electricity sold Annual income from electricity sales Cost of electricity from public utility Efficiency for producing electricity Overall efficiency	Natural gas 2 Mitsubishi industrial gas turbines 32 MW _e \$41,000,000 1990 40 to 50 years 15 years 8 MW _e \$0.024/kWh \$0.047/kWh \$1,600,000 \$0.068/kWh 34% 70%				
	19				

UCSD	Physics 12	_	
Example Efficiencies			
•	A heat pump maintaining 20 °C when it is -5 °C outside has a maximum possible efficiency of: 293/25 = 11.72		
	 note that this means you can get almost 12 times the heat energy than you are supplying in the form of work! this factor is called the C.O.P. (coefficient of performance) 		
•	A freezer maintaining -5 °C in a 20 °C room has a maximum possible efficiency of: 268/25 = 10.72 - called EER (energy efficiency ratio)		
	24		

