Problem 1 (10 pts)

In the circuit in the figure, $\varepsilon=100 \mathrm{~V}, \mathrm{R}=5 \Omega, \mathrm{~L}=10 \mathrm{mH}$ and $\mathrm{C}=10 \mathrm{mF}$. The switch S has been closed for a long time. At time $t=0$ the switch S is opened.
(a) What is the current through the resistor right before S is opened?
(b) What is the charge in the capacitor right before S is opened?
(c) What is the energy stored in the inductor right before S is opened?
(d) What is the maximum charge that will be stored in the capacitor after S is opened?
(e) How long after S is opened will the capacitor for the first time have maximum charge?

Problem 2 (10 pts)
An alternating emf of amplitude 100 V and angular frequency $\omega=100 \mathrm{~s}^{-1}$ is connected in series with a 2Ω resistance, a 50 mH inductor and a capacitor. The current in this circuit is in phase with the emf.
(a) What is the value of the capacitance of this capacitor?
(b) What is the impedance of this circuit and the amplitude of the current?
(c) What is the maximum voltage across the inductor?

Problem 3 (10 pts)

The capacitor in the figure is being charged by a straight wire carrying current $\mathrm{i}(\mathrm{t})$ connected to a circuit not shown. The capacitor is made of circular plates of radius R that are at distance $\mathrm{d}=1 \mathrm{~cm}$ from each other. The point P_{2} is between the capacitor plates at distace $\mathrm{R} / 2$ from the center, the point P_{3} is at the edge of the capacitor (distance R from the center). The point P_{1} is at distance $R / 2$ from the wire far from the capacitor. The magnetic field at point P_{1} at a certain instant is 0.4 mT when the current is 200 A . At that instant:
(a) What is the magnitude of the magnetic field at point P_{2} ?
(b) What is the magnitude of the magnetic field at point P_{3} ?
(c) What is the value of $\mathrm{dE} / \mathrm{dt}$, where E is the electric field between the capacitor plates?

Give your answer in $\mathrm{V} /(\mathrm{m} \mathrm{s})$. Use $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{Nm}^{2}\right), \mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} / \mathrm{A}$.

