Problem 1 (10 pts)

The figure shows a non-conducting sphere of radius R and uniform charge density ρ, surrounded by a concentric non-conducting spherical shell of inner radius $2 R$, outer radius $4 R$, and the same uniform charge density ρ. In-between there is vacuum.
(a) Give an expression for the electric field at radius R, E_{R}, in terms of ρ, R, and ε_{0}.
(b) Give the value of the electric field at radius $2 R, E(2 R)$, in terms of E_{R} only.
(c) Give the value of the electric field at radius $3 \mathrm{R}, \mathrm{E}(3 \mathrm{R})$, in terms of E_{R}. (Note that 3 R is inside the outer shell halfway between its surfaces).
(d) Make a plot of $E(r)$ versus r for r ranging from 0 to $5 R$ indicating on the r axis the points where there are changes in the behavior (slope) of $\mathrm{E}(\mathrm{r})$.

Problem 2 (10 pts)

There is a charge $4 q$ at the origin and a charge $-3 q$ at position a along the x axis. The point P is on the x axis at distance d from the origin. At a distance d from P in direction perpendicular to the x axis there is a dipole of moment p_{0} pointing in the -x direction, as shown in the figure. The electric field at point P is found to be $E_{P}=\frac{q}{4 \pi \varepsilon_{0}} \frac{1}{d^{2}}+O\left(\frac{1}{d^{4}}\right)$ pointing in the positive x direction. Assume $\mathrm{d} \gg \mathrm{a}$. Find the value of the dipole p_{0} in terms of q and a .
Hint: don't guess. Use the binomial expansion $(1+\alpha)^{\mathrm{m}} \sim 1+\mathrm{m} \alpha$. Show your work.

Problem 3 (10 pts)

The annulus in the figure has inner radius a and outer radius b and charge per unit area σ. We would like to calculate the electric field at a point P at distance z from the center along the axis perpendicular to the annulus (see figure on the right).
We derived in class that for a ring of radius r and total charge q the electric field at distance z along the perpendicular axis is
$E=\frac{q}{4 \pi \varepsilon_{0}} \frac{z}{\left(z^{2}+r^{2}\right)^{3 / 2}}$
Use that result to do this problem. First, write an expression for the contribution to the electric field at point P from the part of the annulus that has radius between r and $r+d r$.
(a) Then, do an integral and find a formula for the electric field at point $P, E(z)$, in terms of $\sigma, \mathrm{z}, \mathrm{a}, \mathrm{b}$, and ε_{0}. Your answer should not contain the letters q nor r .
(b) Find from your formula the value $\mathrm{E}(\mathrm{z}=0)$. Does it make sense? Explain.
(c) Take in your formula the limit a-->0 and then the limit $\mathrm{z}-->0$ and give the value of E in that case. Does it make sense? Explain why.
(d) Find from your formula the limit $E(z)$ for z very large ($z \gg a, z \gg b$). (not $E=0$!). (Use that $(1+\mathrm{x})^{\mathrm{m}} \sim 1+\mathrm{mx}$ for small x$)$. Explain how you can tell that the answer you get is correct.

Justify all your answers to all problems

