

FIG. 1: Figure for loop problems

1B quiz 3 version A

1. In a laboratory experiment, someone measures a magnetic field which over some range of x, y, z values equals $\vec{B}(x, y, z)=B_{0} x \hat{j}$, where B_{0} is a constant. Which of the following is a true statement about this finding?

- a. A charged particle moving in this region would have a non-constant energy
- b. Any current loop placed in this field would experience no force, just a torque.
- c. Ampere's law says that there must be some current flowing in the z direction
- d. This field is impossible to create

2. A ball with charge $2 \mu C$ falls vertically at a speed of $5 \mathrm{~cm} / \mathrm{sec}$ at the equator, where the earth's magnetic field has magnitude $.5 \times 10^{-4} T$ and points north. What is the magnetic force on the ball?

- a.1. $\times 10^{-12}$ Newtons, southward direction
- b. 0 .
- c. 2.5×10^{-12} Newtons, westward direction
- d. 5.0×10^{-12} Newtons, eastward direction

3. A proton of energy 50 MeV enters a region with a constant magnetic field and feels an immediate acceleration of $10^{14} \mathrm{~m} / \mathrm{s}^{2}$. What are the possible values of the magnetic field magnitude? The mass of the proton is $1.67 \times 10^{-27} \mathrm{~kg}$.

- a. $0<B<2.6 \times 10^{-4} \mathrm{~T}$
- b. $0<B<1.1 \times 10^{-2} \mathrm{~T}$
- c. $2.6 \times 10^{-4} \mathrm{~T}<B<\infty$
- d. $1.1 \times 10^{-2} \mathrm{~T}<B<\infty$

4. Consider the square loop with side length 2 cm shown in the figure above, where the current of 6 A divides into flow going through the two resistors of 3Ω (left) and 6Ω (right). The loop is placed in a region of constant magnetic field (created by the bar magnets) of magnitude .01T. What is the total force on the loop? (note: do not include any force on the wires attached to the loop itself)

- a. $6.0 \times 10^{-4} N$ out of the paper
- b. $1.2 \times 10^{-3} \mathrm{~N}$ out of the paper
- c. $6.0 \times 10^{-4} N$ into the paper
- d. $7.2 \times 10^{-3} \mathrm{~N}$ into the paper

5. In the same case as the previous problem, what is the magnitude of the torque on the loop about the \hat{j} axis going down the loop's center?

- a. $4.0 \times 10^{-6} N$
- b. $1.2 \times 10^{-5} \mathrm{~N}$
- c. $3.4 \times 10^{-6} N$
- d. $1.2 \times 10^{-5} \mathrm{~N}$

6. A long straight wire carries a current of 250 A . At what distance from the wire will the field equal $10^{-3} T$?

- a. 5 cm
- b. 30 cm
- c. 2.5 m
- d. 50 m

7. A long solenoid has 5×10^{4} turns of wire over a length of 2 meters. Attaching this solenoid to a power supply of 10 V produces a magnetic field in the interior of the solenoid of magnitude $5 \times 10^{-2} \mathrm{~T}$. Find the resistance of the wire.

- a. 1.6Ω
- b. 6.3Ω
- c. 15.7Ω
- d. 32Ω

8. The magnetic field at the surface for a neutron star has magnitude $3 \times 10^{7} \mathrm{~T}$. What is the radius of a circular orbit of an electron moving there at $3 \times 10^{6} \mathrm{~m} / \mathrm{sec}$? The mass of an electron is $9.1 \times 10^{-31} \mathrm{~kg}$.

- a. $6.1 \times 10^{-7} \mathrm{~m}$
- b. $2.4 \times 10^{-9} \mathrm{~m}$
- c. $8.3 \times 10^{-11} \mathrm{~m}$
- d. $5.7 \times 10^{-13} \mathrm{~m}$

