

FIG. 1: A, B and C; respectively

1B quiz 2 version A

1. Gold has one electron per atom available as charge carriers. The mass density of gold is $19.3 \mathrm{~kg} / \mathrm{m}^{3}$ and its atomic weight is 197 . Find the drift speed of the electrons in a wire with circular cross section of radius .3 mm and which is carrying a current of carrying . 1 A .

- a. $1.4 \times 10^{-4} \mathrm{~m} / \mathrm{s}$
- b. $3.7 \times 10^{-2} \mathrm{~m} / \mathrm{s}$
- c. $5.9 \times 10^{-1} \mathrm{~m} / \mathrm{s}$
- d. $2.7 \times 10^{-3} \mathrm{~m} / \mathrm{s}$

2. An aluminum wire of length L and a copper wire of length $5 L$ have precisely the same resistance. The resistivity of the two materials are: aluminum, $2.8 \times 10^{-8} \Omega-m$ and copper $1.7 \times 10^{-8} \Omega-m$. What is the ratio of the radius of the copper wire to the aluminum wire?

- a. 3.7
- b. 3.0
- c. 1.74
- d. . 44

3. A heater uses nichrome wire with resistivity $1.0 \times 10^{-6} \Omega-m$ and generates 1250 W of heat when connected across a potential difference of 110 V . How long must the wire be, if its cross-sectional area is $.2 \times 10^{-6} \mathrm{~m}^{2}$?

- a. . 025 m
- b. .37 m
- c. 1.94 m
- d. 23.5 m

4. A resistor with $R=5 \times 10^{6} \Omega$ and a capacitor with $C=120 \mu F$ are connected in series to a 800 V power supply. Find the current when the capacitor is charged to 90% of its final charge.

- a. $3 \mu \mathrm{~A}$
- b. $16 \mu \mathrm{~A}$
- c. $30 \mu \mathrm{~A}$
- d. $160 \mu \mathrm{~A}$

5. One month's electric bill for an apartment is $\$ 25.33$ and the cost of electricity is $\$.08 /$ kilowatt-hour. All appliances run at 120 V . How many electrons passed through the house that month?

- a. 1.8×10^{20}
- b. 7.4×10^{21}
- c. 9.5×10^{23}
- d. 5.9×10^{25}

6. Find the current in the middle resistor in the circuit shown in Fig A

- a. 1.0 A
- b. 1.33 A
- c. 2.0 A
- d. 4.0 A

7. Find the total current out of the battery in the circuit shown in Fig B (hint: you do not need to write down all the Kirchoff law equations; think about symmetry and the role of the middle resistor?)

- a. $\frac{V}{5 R}$
- b. $\frac{V}{2 R}$
- c. $\frac{V}{R}$
- d. $\frac{2 V}{R}$

8. Consider the circuit in Fig C with two resistors and two capacitors connected in series with a 9 V battery. Calculate the potential between the upper-left and upper-right corner points both immediately after the switch is closed and after waiting a time long compared to the circuit's time constants.

- a. $3 \mathrm{~V} ; 3.6 \mathrm{~V}$
- b. $3 \mathrm{~V} ; 5.4 \mathrm{~V}$
- c. $6 \mathrm{~V} ; 5.4 \mathrm{~V}$
- d. $6 \mathrm{~V} ; 0 \mathrm{~V}$

