

FIG. 1: A, B and C; respectively

1B quiz 2 version A

- Gold has one electron per atom available as charge carriers. The mass density of gold is 19.3kg/m³ and its atomic weight is 197. Find the drift speed of the electrons in a wire with circular cross section of radius .3mm and which is carrying a current of carrying .1A.
 - a. $1.4 \times 10^{-4} \text{ m/s}$
 - b. $3.7 \times 10^{-2} \text{ m/s}$
 - c. $5.9 \times 10^{-1} \text{ m/s}$
 - d. 2.7 $\times 10^{-3}$ m/s
- 2. An aluminum wire of length L and a copper wire of length 5L have precisely the same resistance. The resistivity of the two materials are: aluminum, $2.8 \times 10^{-8}\Omega m$ and copper $1.7 \times 10^{-8}\Omega m$. What is the ratio of the radius of the copper wire to the aluminum wire?
 - a. 3.7
 - b. 3.0
 - c. 1.74
 - d. .44
- 3. A heater uses nichrome wire with resistivity $1.0 \times 10^{-6}\Omega m$ and generates 1250W of heat when connected across a potential difference of 110V. How long must the wire be, if its cross-sectional area is $.2 \times 10^{-6}m^2$?

- a. .025m
- b. .37m
- c. 1.94m
- d. 23.5m
- 4. A resistor with $R = 5 \times 10^6 \Omega$ and a capacitor with $C = 120 \mu F$ are connected in series to a 800V power supply. Find the current when the capacitor is charged to 90% of its final charge.
 - $\bullet\,$ a. 3 μ A
 - b. 16 μ A
 - c. 30 μ A
 - d. 160 μ A
- 5. One month's electric bill for an apartment is \$25.33 and the cost of electricity is \$.08/kilowatt-hour. All appliances run at 120V. How many electrons passed through the house that month?
 - $\bullet\,$ a. 1.8 $\times 10^{20}$
 - b. 7.4 $\times 10^{21}$
 - $\bullet\,$ c. 9.5 $\times 10^{23}$
 - $\bullet~$ d. 5.9 $\times 10^{25}$
- 6. Find the current in the middle resistor in the circuit shown in Fig A
 - a. 1.0 A
 - b. 1.33 A
 - c. 2.0 A
 - d. 4.0 A
- 7. Find the total current out of the battery in the circuit shown in Fig B (hint: you do not need to write down all the Kirchoff law equations; think about symmetry and the role of the middle resistor?)

- a. $\frac{V}{5R}$
- b. $\frac{V}{2R}$
- c. $\frac{V}{R}$
- d. $\frac{2V}{R}$
- 8. Consider the circuit in Fig C with two resistors and two capacitors connected in series with a 9V battery. Calculate the potential between the upper-left and upper-right corner points both immediately after the switch is closed and after waiting a time long compared to the circuit's time constants.
 - a. 3V; 3.6V
 - b. 3V; 5.4V
 - c. 6V; 5.4V
 - d. 6V; 0V