

1B quiz 1 version A

1. A $2.5 \mu C$ charge is placed at the center of a cube whose sides measure 10 cm . Find the electric flux going out the top face of the cube (hints: no integrals are necessary; use symmetry)

- a. $4.7 \times 10^{4} \mathrm{~V}-\mathrm{m}$
- b. $9.4 \times 10^{4} \mathrm{~V}-\mathrm{m}$
- c. $9.4 \times 10^{6} \mathrm{~V}-\mathrm{m}$
- d. $4.7 \times 10^{7} \mathrm{~V}-\mathrm{m}$

2. Find the equivalent capacitance (i.e. the ratio of total charge to battery voltage) for the circuit shown in the Figure above.

- a. 1.25 F
- b. 1.71 F
- c. 4.7 F
- d. 6.7 F

3. Two point charges are placed on the x -axis; a charge of $+3 \mu C$ at $x=0$ and a charge of $-2 \mu C$ at $x=.5 m$. Which of the following is true about the positions at which the electric potential is zero?

- a. The potential zero is zero at only one point; the point lies on the x axis and is between the two charges
- b. The potential zero is zero at only one point; the point lies on the x axis and is not between the two charges
- c. The potential zero is zero along a curve in the x-y plane that intersects the x -axis at a single point that is between the two charges
- d. The potential zero is zero along a curve in the x-y plane that intersects the x -axis at a two points, one that is between the two charges and one that is not between the two charges

4. How strong is the electric field between the plates of a $.8 \mu F$ capacitor, if the plates are 2.0 mm apart, the gap is filled with air, and plate each has a charge of $72 \mu C$?

- a. $90 \mathrm{~N} / \mathrm{C}$
- b. $4.5 \times 10^{4} \mathrm{~N} / \mathrm{C}$
- c. $7.5 \mathrm{~N} / \mathrm{C}$
- d. $.18 \mathrm{~N} / \mathrm{C}$

5. An electron starts with a kinetic energy of 1 kev from a position 25 cm away from a fixed point charge of magnitude $q=-0.125 \mu C$. How fast will it be moving when it is very far away? The mass of the electron is $9.1 \times 10^{-31} \mathrm{~kg}$ and its charge is $-1.6 \times 10^{-16} C$

- a. $4.4 \times 10^{7} \mathrm{~m} / \mathrm{s}$
- b. $3.5 \times 10^{7} \mathrm{~m} / \mathrm{s}$
- c. $7.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$
- d. $3.1 \times 10^{6} \mathrm{~m} / \mathrm{s}$

6. Three equal charges with $q=4.0 \mu C$ are placed on the vertices of an equilateral triangle with side $1.2 m$ (see figure). What is the force on the topmost charge?

- a. $2.1 \times 10^{-1} \mathrm{~N}(.5 \hat{i}+.87 \hat{j})$
- b. $8.8 \times 10^{-2} \mathrm{~N} \hat{j}$
- c. $1.7 \times 10^{-1} \mathrm{~N} \hat{i}$
- d. $1.7 \times 10^{-1} \mathrm{~N} \hat{j}$

7. An electron is released from rest in a uniform electric field and accelerates to the north at a rate of $115 \mathrm{~m} / \mathrm{s}^{2}$. The mass of the electron is $9.1 \times 10^{-31} \mathrm{~kg}$ and its charge is $-1.6 \times 10^{-16} C$ What is the electric field?

- a. $6.5 \times 10^{-13} \mathrm{~N} / \mathrm{C}$, pointing north
- b. $6.5 \times 10^{-13} \mathrm{~N} / \mathrm{C}$, pointing south
- c. $2.6 \times 10^{-12} \mathrm{~N} / \mathrm{C}$, pointing north
- d. $2.6 \times 10^{-12} \mathrm{~N} / \mathrm{C}$, pointing south

8. A solid metal sphere of radius 3.0 m carries a charge of 3.5 mC . What is the magnitude of the electric field at $r=2.9 m$ and $r=3.1 m$ away from the sphere's center?

- a. 0 and 0
- b. $3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}$ and $3.3 \times 10^{6} \mathrm{~N} / \mathrm{C}$
- c. 0 and $3.3 \times 10^{6} \mathrm{~N} / \mathrm{C}$
- d. $3.0 \times 10^{6} \mathrm{~N} / \mathrm{C}$ and $0 \mathrm{~N} / \mathrm{C}$

