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2 CHAPTER 1. PROBABILITY

1.2 A Statistical View

1.2.1 Distributions for a random walk

Consider the mechanical system depicted in Fig. 1.1, a version of which is often sold in novelty shops. A ball
is released from the top, which cascades consecutively through N levels. The details of each ball’s motion are
governed by Newton’s laws of motion. However, to predict where any given ball will end up in the bottom row is
difficult, because the ball’s trajectory depends sensitively on its initial conditions, and may even be influenced by
random vibrations of the entire apparatus. We therefore abandon all hope of integrating the equations of motion
and treat the system statistically. That is, we assume, at each level, that the ball moves to the right with probability
p and to the left with probability q = 1− p. If there is no bias in the system, then p = q = 1

2 . The position XN after
N steps may be written

X =
N
∑

j=1

σj , (1.1)

where σj = +1 if the ball moves to the right at level j, and σj = −1 if the ball moves to the left at level j. At each
level, the probability for these two outcomes is given by

Pσ = p δσ,+1 + q δσ,−1 =

{

p if σ = +1

q if σ = −1 .
(1.2)

This is a normalized discrete probability distribution of the type discussed in section 1.4 below. The multivariate
distribution for all the steps is then

P(σ1 , . . . , σN ) =

N
∏

j=1

P (σj) . (1.3)

Our system is equivalent to a one-dimensional random walk. Imagine an inebriated pedestrian on a sidewalk
taking steps to the right and left at random. After N steps, the pedestrian’s location is X .

Now let’s compute the average of X :

〈X〉 =
〈

N
∑

j=1

σj

〉

= N〈σ〉 = N
∑

σ=±1

σ P (σ) = N(p − q) = N(2p − 1) . (1.4)

This could be identified as an equation of state for our system, as it relates a measurable quantity X to the number
of steps N and the local bias p. Next, let’s compute the average of X2:

〈X2〉 =

N
∑

j=1

N
∑

j′=1

〈σjσj′ 〉 = N2(p − q)2 + 4Npq . (1.5)

Here we have used

〈σjσj′ 〉 = δjj′ +
(

1 − δjj′
)

(p − q)2 =

{

1 if j = j′

(p − q)2 if j 6= j′ .
(1.6)

Note that 〈X2〉 ≥ 〈X〉2, which must be so because

Var(X) = 〈(∆X)2〉 ≡
〈(

X − 〈X〉
)2〉

= 〈X2〉 − 〈X〉2 . (1.7)

This is called the variance of X . We have Var(X) = 4Np q. The root mean square deviation, ∆Xrms, is the square root

of the variance: ∆Xrms =
√

Var(X). Note that the mean value of X is linearly proportional to N 1, but the RMS

1The exception is the unbiased case p = q = 1

2
, where 〈X〉 = 0.
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Figure 1.1: The falling ball system, which mimics a one-dimensional random walk.

fluctuations ∆Xrms are proportional to N1/2. In the limit N → ∞ then, the ratio ∆Xrms/〈X〉 vanishes as N−1/2.
This is a consequence of the central limit theorem (see §1.4.2 below), and we shall meet up with it again on several
occasions.

We can do even better. We can find the complete probability distribution for X . It is given by

PN,X =

(

N

N
R

)

pNR qNL , (1.8)

where NR/L are the numbers of steps taken to the right/left, with N = NR + NL, and X = NR − NL. There are
many independent ways to take N

R
steps to the right. For example, our first N

R
steps could all be to the right, and

the remaining N
L

= N − N
R

steps would then all be to the left. Or our final N
R

steps could all be to the right. For
each of these independent possibilities, the probability is pNR qNL . How many possibilities are there? Elementary
combinatorics tells us this number is

(

N

NR

)

=
N !

NR! NL!
. (1.9)

Note that N ± X = 2NR/L, so we can replace NR/L = 1
2 (N ± X). Thus,

PN,X =
N !

(

N+X
2

)

!
(

N−X
2

)

!
p(N+X)/2 q(N−X)/2 . (1.10)

1.2.2 Thermodynamic limit

Consider the limit N → ∞ but with x ≡ X/N finite. This is analogous to what is called the thermodynamic limit
in statistical mechanics. Since N is large, x may be considered a continuous variable. We evaluate lnPN,X using
Stirling’s asymptotic expansion

lnN ! ≃ N lnN − N + O(ln N) . (1.11)



4 CHAPTER 1. PROBABILITY

We then have

lnPN,X ≃ N lnN − N − 1
2N(1 + x) ln

[

1
2N(1 + x)

]

+ 1
2N(1 + x)

− 1
2N(1 − x) ln

[

1
2N(1 − x)

]

+ 1
2N(1 − x) + 1

2N(1 + x) ln p + 1
2N(1 − x) ln q

= −N
[

(

1+x
2

)

ln
(

1+x
2

)

+
(

1−x
2

)

ln
(

1−x
2

)

]

+ N
[

(

1+x
2

)

ln p +
(

1−x
2

)

ln q
]

. (1.12)

Notice that the terms proportional to N lnN have all cancelled, leaving us with a quantity which is linear in N .
We may therefore write lnPN,X = −Nf(x) + O(ln N), where

f(x) =
[

(

1+x
2

)

ln
(

1+x
2

)

+
(

1−x
2

)

ln
(

1−x
2

)

]

−
[

(

1+x
2

)

ln p +
(

1−x
2

)

ln q
]

. (1.13)

We have just shown that in the large N limit we may write

PN,X = C e−Nf(X/N) , (1.14)

where C is a normalization constant2. Since N is by assumption large, the function PN,X is dominated by the
minimum (or minima) of f(x), where the probability is maximized. To find the minimum of f(x), we set f ′(x) = 0,
where

f ′(x) = 1
2 ln

(

q

p
· 1 + x

1 − x

)

. (1.15)

Setting f ′(x) = 0, we obtain

1 + x

1 − x
=

p

q
⇒ x̄ = p − q . (1.16)

We also have

f ′′(x) =
1

1 − x2
, (1.17)

so invoking Taylor’s theorem,

f(x) = f(x̄) + 1
2f ′′(x̄) (x − x̄)2 + . . . . (1.18)

Putting it all together, we have

PN,X ≈ C exp

[

− N(x − x̄)2

8pq

]

= C exp

[

− (X − X̄)2

8Npq

]

, (1.19)

where X̄ = 〈X〉 = N(p − q) = Nx̄. The constant C is determined by the normalization condition,

∞
∑

X=−∞

PN,X ≈ 1
2

∞
∫

−∞

dX C exp

[

− (X − X̄)2

8Npq

]

=
√

2πNpq C , (1.20)

and thus C = 1/
√

2πNpq. Why don’t we go beyond second order in the Taylor expansion of f(x)? We will find
out in §1.4.2 below.

2The origin of C lies in the O(ln N) and O(N0) terms in the asymptotic expansion of ln N !. We have ignored these terms here. Accounting
for them carefully reproduces the correct value of C in eqn. 1.20.
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Figure 1.2: Comparison of exact distribution of eqn. 1.10 (red squares) with the Gaussian distribution of eqn. 1.19
(blue line).

1.2.3 Entropy and energy

The function f(x) can be written as a sum of two contributions, f(x) = e(x) − s(x), where

s(x) = −
(

1+x
2

)

ln
(

1+x
2

)

−
(

1−x
2

)

ln
(

1−x
2

)

e(x) = − 1
2 ln(pq) − 1

2x ln(p/q) .
(1.21)

The function S(N, x) ≡ Ns(x) is analogous to the statistical entropy of our system3. We have

S(N, x) = Ns(x) = ln

(

N

N
R

)

= ln

(

N
1
2N(1 + x)

)

. (1.22)

Thus, the statistical entropy is the logarithm of the number of ways the system can be configured so as to yield the same value
of X (at fixed N ). The second contribution to f(x) is the energy term. We write

E(N, x) = Ne(x) = − 1
2N ln(pq) − 1

2Nx ln(p/q) . (1.23)

The energy term biases the probability PN,X = exp(S − E) so that low energy configurations are more probable than

high energy configurations. For our system, we see that when p < q (i.e. p < 1
2 ), the energy is minimized by taking x

as small as possible (meaning as negative as possible). The smallest possible allowed value of x = X/N is x = −1.
Conversely, when p > q (i.e. p > 1

2 ), the energy is minimized by taking x as large as possible, which means x = 1.
The average value of x, as we have computed explicitly, is x̄ = p − q = 2p − 1, which falls somewhere in between
these two extremes.

In actual thermodynamic systems, as we shall see, entropy and energy are not dimensionless. What we have
called S here is really S/kB, which is the entropy in units of Boltzmann’s constant. And what we have called E
here is really E/k

B
T , which is energy in units of Boltzmann’s constant times temperature.

3The function s(x) is the specific entropy.
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1.2.4 Entropy and information theory

It was shown in the classic 1948 work of Claude Shannon that entropy is in fact a measure of information4. Suppose
we observe that a particular event occurs with probability p. We associate with this observation an amount of
information I(p). The information I(p) should satisfy certain desiderata:

1 Information is non-negative, i.e. I(p) ≥ 0.

2 If two events occur independently so their joint probability is p1 p2, then their information is additive, i.e.
I(p1p2) = I(p1) + I(p2).

3 I(p) is a continuous function of p.

4 There is no information content to an event which is always observed, i.e. I(1) = 0.

From these four properties, it is easy to show that the only possible function I(p) is

I(p) = −A ln p , (1.24)

where A is an arbitrary constant that can be absorbed into the base of the logarithm, since logb x = lnx/ ln b. We
will take A = 1 and use e as the base, so I(p) = − ln p. Another common choice is to take the base of the logarithm
to be 2, so I(p) = − log2 p. In this latter case, the units of information are known as bits. Note that I(0) = ∞. This
means that the observation of an extremely rare event carries a great deal of information.

Now suppose we have a set of events labeled by an integer n which occur with probabilities {pn}. What is
the expected amount of information in N observations? Since event n occurs an average of Npn times, and the
information content in pn is − ln pn, we have that the average information per observation is

S =
〈IN 〉
N

= −
∑

n

pn ln pn , (1.25)

which is known as the entropy of the distribution. Thus, maximizing S is equivalent to maximizing the information
content per observation.

Consider, for example, the information content of course grades. As we have seen, if the only constraint on the
probability distribution is that of overall normalization, then S is maximized when all the probabilities pn are
equal. The binary entropy is then S = log2 Γ , since pn = 1/Γ . Thus, for pass/fail grading, the maximum average
information per grade is − log2(

1
2 ) = log2 2 = 1 bit. If only A, B, C, D, and F grades are assigned, then the

maximum average information per grade is log2 5 = 2.32 bits. If we expand the grade options to include {A+, A,
A-, B+, B, B-, C+, C, C-, D, F}, then the maximum average information per grade is log2 11 = 3.46 bits.

Equivalently, consider, following the discussion in vol. 1 of Kardar, a random sequence {n1, n2, . . . , nN} where
each element nj takes one of K possible values. There are then KN such possible sequences, and to specify one of

them requires log2(K
N ) = N log2 K bits of information. However, if the value n occurs with probability pn, then

on average it will occur Nn = Npn times in a sequence of length N , and the total number of such sequences will
be

g(N) =
N !

∏K
n=1 Nn!

. (1.26)

In general, this is far less that the total possible number KN , and the number of bits necessary to specify one from
among these g(N) possibilities is

log2 g(N) = log2(N !) −
K
∑

n=1

log2(Nn!) ≈ −N
K
∑

n=1

pn log2 pn , (1.27)

4See ‘An Introduction to Information Theory and Entropy’ by T. Carter, Santa Fe Complex Systems Summer School, June 2011. Available
online at http://astarte.csustan.edu/ tom/SFI-CSSS/info-theory/info-lec.pdf.
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where we have invoked Stirling’s approximation. If the distribution is uniform, then we have pn = 1
K for all

n ∈ {1, . . . , K}, and log2 g(N) = N log2 K .

1.3 Probability Distributions from Maximum Entropy

We have shown how one can proceed from a probability distribution and compute various averages. We now
seek to go in the other direction, and determine the full probability distribution based on a knowledge of certain
averages.

At first, this seems impossible. Suppose we want to reproduce the full probability distribution for an N -step
random walk from knowledge of the average 〈X〉 = (2p − 1)N . The problem seems ridiculously underdeter-
mined, since there are 2N possible configurations for an N -step random walk: σj = ±1 for j = 1, . . . , N . Overall
normalization requires

∑

{σj}

P (σ1, . . . , σN ) = 1 , (1.28)

but this just imposes one constraint on the 2N probabilities P (σ1, . . . , σN ), leaving 2N −1 overall parameters. What
principle allows us to reconstruct the full probability distribution

P (σ1, . . . , σN ) =
N
∏

j=1

(

p δσj ,1 + q δσj ,−1

)

=
N
∏

j=1

p(1+σj)/2 q(1−σj)/2 , (1.29)

corresponding to N independent steps?

1.3.1 The principle of maximum entropy

The entropy of a discrete probability distribution {pn} is defined as

S = −
∑

n

pn ln pn , (1.30)

where here we take e as the base of the logarithm. The entropy may therefore be regarded as a function of the
probability distribution: S = S

(

{pn}
)

. One special property of the entropy is the following. Suppose we have two

independent normalized distributions
{

pA

a

}

and
{

pB

b

}

. The joint probability for events a and b is then Pa,b = pA

a pB

b .
The entropy of the joint distribution is then

S = −
∑

a

∑

b

Pa,b lnPa,b = −
∑

a

∑

b

pA

a pB

b ln
(

pA

a pB

b

)

= −
∑

a

∑

b

pA

a pB

b

(

ln pA

a + ln pB

b

)

= −
∑

a

pA

a ln pA

a ·
∑

b

pB

b −
∑

b

pB

b ln pB

b ·
∑

a

pA

a = −
∑

a

pA

a ln pA

a −
∑

b

pB

b ln pB

b

= SA + SB .

Thus, the entropy of a joint distribution formed from two independent distributions is additive.

Suppose all we knew about {pn} was that it was normalized. Then
∑

n pn = 1. This is a constraint on the values
{pn}. Let us now extremize the entropy S with respect to the distribution {pn}, but subject to the normalization
constraint. We do this using Lagrange’s method of undetermined multipliers. We define

S∗
(

{pn}, λ
)

= −
∑

n

pn ln pn − λ
(

∑

n

pn − 1
)

(1.31)
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and we freely extremize S∗ over all its arguments. Thus, for all n we have

∂S∗

∂pn

= −
(

ln pn + 1 + λ
)

= 0 (1.32)

as well as
∂S∗

∂λ
=
∑

n

pn − 1 = 0 . (1.33)

From the first of these equations, we obtain pn = e−(1+λ), and from the second we obtain

∑

n

pn = e−(1+λ) ·
∑

n

1 = Γ e−(1+λ) , (1.34)

where Γ ≡∑n 1 is the total number of possible events. Thus,

pn =
1

Γ
, (1.35)

which says that all events are equally probable.

Now suppose we know one other piece of information, which is the average value of some quantity X =
∑

n Xn pn. We now extremize S subject to two constraints, and so we define

S∗
(

{pn}, λ0, λ1

)

= −
∑

n

pn ln pn − λ0

(

∑

n

pn − 1
)

− λ1

(

∑

n

Xn pn − X
)

. (1.36)

We then have
∂S∗

∂pn

= −
(

ln pn + 1 + λ0 + λ1 Xn

)

= 0 , (1.37)

which yields the two-parameter distribution

pn = e−(1+λ0) e−λ1Xn . (1.38)

To fully determine the distribution {pn} we need to invoke the two equations
∑

n pn = 1 and
∑

n Xn pn = X ,
which come from extremizing S∗ with respect to λ0 and λ1, respectively:

e−(1+λ0)
∑

n

e−λ1Xn = 1 (1.39)

e−(1+λ0)
∑

n

Xn e−λ1Xn = X . (1.40)

General formulation

The generalization to K extra pieces of information (plus normalization) is immediately apparent. We have

Xa =
∑

n

Xa
n pn , (1.41)

and therefore we define

S∗
(

{pn}, {λa}
)

= −
∑

n

pn ln pn −
K
∑

a=0

λa

(

∑

n

Xa
n pn − Xa

)

, (1.42)
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with X
(a=0)
n ≡ X(a=0) = 1. Then the optimal distribution which extremizes S subject to the K + 1 constraints is

pn = exp

{

− 1 −
K
∑

a=0

λa Xa
n

}

=
1

Z
exp

{

−
K
∑

a=1

λa Xa
n

}

,

(1.43)

where Z = e1+λ0 is determined by normalization:
∑

n pn = 1. This is a (K + 1)-parameter distribution, with
{λ0, λ1, . . . , λK} determined by the K + 1 constraints in eqn. 1.41.

Example

As an example, consider the random walk problem. We have two pieces of information:

∑

σ1

· · ·
∑

σN

P (σ1, . . . , σN ) = 1 (1.44)

∑

σ1

· · ·
∑

σN

P (σ1, . . . , σN )
N
∑

j=1

σj = X . (1.45)

Here the discrete label n from §1.3.1 ranges over 2N possible values, and may be written as an N digit binary
number rN · · · r1, where rj = 1

2 (1 + σj) is 0 or 1. Extremizing S subject to these constraints, we obtain

P (σ1, . . . , σN ) = C exp

{

− λ
∑

j

σj

}

= C
N
∏

j=1

e−λ σj , (1.46)

where C ≡ e−(1+λ0) and λ ≡ λ2. Normalization then requires

Tr P ≡
∑

{σj}

= C
(

eλ + e−λ
)N

, (1.47)

hence C = (coshλ)−N . We then have

P (σ1, . . . , σN ) =

N
∏

j=1

e−λσj

eλ + e−λ
=

N
∏

j=1

(

p δσj ,1 + q δσj ,−1

)

, (1.48)

where

p =
e−λ

eλ + e−λ
, q = 1 − p =

eλ

eλ + e−λ
. (1.49)

We then have X = (2p − 1)N , which determines p = 1
2 (N + X), and we have recovered the correct distribution.

1.3.2 Continuous probability distributions

Suppose we have a continuous probability density P (ϕ) defined over some set Ω. We have observables

Xa =

∫

Ω

dµ Xa(ϕ)P (ϕ) , (1.50)
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where dµ is the appropriate integration measure. We assume dµ =
∏D

j=1 dϕj , where D is the dimension of Ω.
Then we extremize the functional

S∗
[

P (ϕ), {λa}
]

=

∫

Ω

dµ P (ϕ) ln P (ϕ) −
K
∑

a=0

λa

(

∫

Ω

dµ P (ϕ)Xa(ϕ) − Xa

)

(1.51)

with respect to P (ϕ) and with respect to {λa}. Again, X0(ϕ) ≡ X0 ≡ 1. This yields the following result:

lnP (ϕ) = −1 −
K
∑

a=0

λa Xa(ϕ) . (1.52)

The K + 1 Lagrange multipliers {λa} are then determined from the K + 1 constraint equations in eqn. 1.50.

As an example, consider a distribution P (x) over the real numbers R. We constrain

∞
∫

−∞

dx P (x) = 1 ,

∞
∫

−∞

dx xP (x) = µ ,

∞
∫

−∞

dx x2 P (x) = µ2 + σ2 . (1.53)

Extremizing the entropy, we then obtain

P (x) = C e−λ1x−λ2x2

, (1.54)

where C = e−(1+λ0). We already know the answer:

P (x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (1.55)

In other words, λ1 = −µ/σ2 and λ2 = 1/2σ2, with C = e−µ2/2σ2

/
√

2πσ2.

1.4 General Aspects of Probability Distributions

1.4.1 Discrete and continuous distributions

Consider a system whose possible configurations |n 〉 can be labeled by a discrete variable n ∈ C, where C is the
set of possible configurations. The total number of possible configurations, which is to say the order of the set C,
may be finite or infinite. Next, consider an ensemble of such systems, and let Pn denote the probability that a
given random element from that ensemble is in the state (configuration) |n 〉. The collection {Pn} forms a discrete
probability distribution. We assume that the distribution is normalized, meaning

∑

n∈C

Pn = 1 . (1.56)

Now let An be a quantity which takes values depending on n. The average of A is given by

〈A〉 =
∑

n∈C

Pn An . (1.57)

Typically, C is the set of integers (Z) or some subset thereof, but it could be any countable set. As an example,
consider the throw of a single six-sided die. Then Pn = 1

6 for each n ∈ {1, . . . , 6}. Let An = 0 if n is even and 1 if n
is odd. Then find 〈A〉 = 1

2 , i.e. on average half the throws of the die will result in an even number.
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It may be that the system’s configurations are described by several discrete variables {n1, n2, n3, . . .}. We can
combine these into a vector n and then we write Pn for the discrete distribution, with

∑

n Pn = 1.

Another possibility is that the system’s configurations are parameterized by a collection of continuous variables,
ϕ = {ϕ1, . . . , ϕn}. We write ϕ ∈ Ω, where Ω is the phase space (or configuration space) of the system. Let dµ be a
measure on this space. In general, we can write

dµ = W (ϕ1, . . . , ϕn) dϕ1 dϕ2 · · · dϕn . (1.58)

The phase space measure used in classical statistical mechanics gives equal weight W to equal phase space vol-
umes:

dµ = C
r
∏

σ=1

dqσ dpσ , (1.59)

where C is a constant we shall discuss later on below5.

Any continuous probability distribution P (ϕ) is normalized according to

∫

Ω

dµ P (ϕ) = 1 . (1.60)

The average of a function A(ϕ) on configuration space is then

〈A〉 =

∫

Ω

dµ P (ϕ)A(ϕ) . (1.61)

For example, consider the Gaussian distribution

P (x) =
1√

2πσ2
e−(x−µ)2/2σ2

. (1.62)

From the result6
∞
∫

−∞

dx e−αx2

e−βx =

√

π

α
eβ2/4α , (1.63)

we see that P (x) is normalized. One can then compute

〈x〉 = µ

〈x2〉 − 〈x〉2 = σ2 .
(1.64)

We call µ the mean and σ the standard deviation of the distribution, eqn. 1.62.

The quantity P (ϕ) is called the distribution or probability density. One has

P (ϕ) dµ = probability that configuration lies within volume dµ centered at ϕ

For example, consider the probability density P = 1 normalized on the interval x ∈
[

0, 1
]

. The probability that
some x chosen at random will be exactly 1

2 , say, is infinitesimal – one would have to specify each of the infinitely
many digits of x. However, we can say that x ∈

[

0.45 , 0.55
]

with probability 1
10 .

5Such a measure is invariant with respect to canonical transformations, which are the broad class of transformations among coordinates
and momenta which leave Hamilton’s equations of motion invariant, and which preserve phase space volumes under Hamiltonian evolution.
For this reason dµ is called an invariant phase space measure. See the discussion in appendix II of chapter 4.

6Memorize this!
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If x is distributed according to P1(x), then the probability distribution on the product space (x1 , x2) is simply the
product of the distributions:

P2(x1, x2) = P1(x1)P1(x2) . (1.65)

Suppose we have a function φ(x1, . . . , xN ). How is it distributed? Let Q(φ) be the distribution for φ. We then have

P(φ) =

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxN PN (x1, . . . , xN ) δ
(

φ(x1, . . . , xN ) − φ
)

=

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

xN P1(x1) · · ·P1(xN ) δ
(

φ(x1, . . . , xN ) − φ
)

,

(1.66)

where the second line is appropriate if the {xj} are themselves distributed independently. Note that

∞
∫

−∞

dφ P(φ) = 1 , (1.67)

so P(φ) is itself normalized.

1.4.2 Central limit theorem

In particular, consider the distribution function of the sum

X =

N
∑

i=1

xi . (1.68)

We will be particularly interested in the case where N is large. For general N , though, we have

PN (X) =

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxN P1(x1) · · ·P1(xN ) δ
(

x1 + x2 + . . . + xN − X
)

. (1.69)
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It is convenient to compute the Fourier transform7 of P(X):

P̂N(k) =

∞
∫

−∞

dX PN (X) e−ikX (1.70)

=

∞
∫

−∞

dX

∞
∫

−∞

dx1 · · ·
∞
∫

−∞

xN P1(x1) · · ·P1(xN ) δ
(

x1 + . . . + xN − X) e−ikX

=
[

P̂1(k)
]N

,

where

P̂1(k) =

∞
∫

−∞

dxP1(x) e−ikx (1.71)

is the Fourier transform of the single variable distribution P1(x). The distribution PN(X) is a convolution of the
individual P1(xi) distributions. We have therefore proven that the Fourier transform of a convolution is the product of
the Fourier transforms.

OK, now we can write for P̂1(k)

P̂1(k) =

∞
∫

−∞

dxP1(x)
(

1 − ikx − 1
2 k2x2 + 1

6 i k3 x3 + . . .
)

= 1 − ik〈x〉 − 1
2 k2〈x2〉 + 1

6 i k3〈x3〉 + . . . .

(1.72)

Thus,

ln P̂1(k) = −iµk − 1
2σ2k2 + 1

6 i γ3 k3 + . . . , (1.73)

where

µ = 〈x〉
σ2 = 〈x2〉 − 〈x〉2

γ3 = 〈x3〉 − 3 〈x2〉 〈x〉 + 2 〈x〉3
(1.74)

We can now write
[

P̂1(k)
]N

= e−iNµk e−Nσ2k2/2 eiNγ3k3/6 · · · (1.75)

7Jean Baptiste Joseph Fourier (1768-1830) had an illustrious career. The son of a tailor, and orphaned at age eight, Fourier’s ignoble status

rendered him ineligible to receive a commission in the scientific corps of the French army. A Benedictine minister at the École Royale Militaire
of Auxerre remarked, ”Fourier, not being noble, could not enter the artillery, although he were a second Newton.” Fourier prepared for the priesthood,
but his affinity for mathematics proved overwhelming, and so he left the abbey and soon thereafter accepted a military lectureship position.
Despite his initial support for revolution in France, in 1794 Fourier ran afoul of a rival sect while on a trip to Orléans and was arrested and very
nearly guillotined. Fortunately the Reign of Terror ended soon after the death of Robespierre, and Fourier was released. He went on Napoleon
Bonaparte’s 1798 expedition to Egypt, where he was appointed governor of Lower Egypt. His organizational skills impressed Napoleon, and
upon return to France he was appointed to a position of prefect in Grenoble. It was in Grenoble that Fourier performed his landmark studies
of heat, and his famous work on partial differential equations and Fourier series. It seems that Fourier’s fascination with heat began in Egypt,
where he developed an appreciation of desert climate. His fascination developed into an obsession, and he became convinced that heat could
promote a healthy body. He would cover himself in blankets, like a mummy, in his heated apartment, even during the middle of summer.
On May 4, 1830, Fourier, so arrayed, tripped and fell down a flight of stairs. This aggravated a developing heart condition, which he refused
to treat with anything other than more heat. Two weeks later, he died. Fourier’s is one of the 72 names of scientists, engineers and other
luminaries which are engraved on the Eiffel Tower. Source: http://www.robertnowlan.com/pdfs/Fourier,%20Joseph.pdf
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Now for the inverse transform. In computing PN (X), we will expand the term eiNγ3k3/6 and all subsequent terms
in the above product as a power series in k. We then have

PN (X) =

∞
∫

−∞

dk

2π
eik(X−Nµ) e−Nσ2k2/2

{

1 + 1
6 i Nγ3k3 + . . .

}

=

(

1 − 1
6Nγ3 ∂3

∂X3
+ . . .

)

1√
2πNσ2

e−(X−Nµ)2/2Nσ2

=
1√

2πNσ2
e−(X−Nµ)2/2Nσ2

(N → ∞) .

(1.76)

In going from the second line to the third, we have written X =
√

N ξ, in which case N ∂3

∂X3 = N−1/2 ∂3

∂ξ3 , which

gives a subleading contribution which vanishes in the N → ∞ limit. We have just proven the central limit theorem:
in the limit N → ∞, the distribution of a sum of N independent random variables xi is a Gaussian with mean Nµ

and standard deviation
√

N σ. Our only assumptions are that the mean µ and standard deviation σ exist for the
distribution P1(x). Note that P1(x) itself need not be a Gaussian – it could be a very peculiar distribution indeed,
but so long as its first and second moment exist, where the kth moment is simply 〈xk〉, the distribution of the sum

X =
∑N

i=1 xi is a Gaussian.

1.4.3 Multidimensional Gaussian integral

Consider the multivariable Gaussian distribution,

P (x) ≡
(

det A

(2π)n

)1/2

exp
(

− 1
2 xi Aij xj

)

, (1.77)

where A is a positive definite matrix of rank n. A mathematical result which is extremely important throughout
physics is the following:

Z(b) =

(

det A

(2π)n

)1/2
∞
∫

−∞

dx1 · · ·
∞
∫

−∞

dxn exp
(

− 1
2 xi Aij xj + bi xi

)

= exp
(

1
2 bi A−1

ij bj

)

. (1.78)

Here, the vector b = (b1 , . . . , bn) is identified as a source. Since Z(0) = 1, we have that the distribution P (x) is
normalized. Now consider averages of the form

〈xj1
· · ·xj2k

〉 =

∫

dnx P (x) xj1
· · · xj2k

=
∂nZ(b)

∂bj1
· · · ∂bj

2k

∣

∣

∣

∣

b=0

=
∑

contractions

A−1
j
σ(1)

j
σ(2)

· · ·A−1
j
σ(2k−1)

j
σ(2k)

.

(1.79)

The sum in the last term is over all contractions of the indices {j1 , . . . , j2k}. A contraction is an arrangement of
the 2k indices into k pairs. There are C2k = (2k)!/2kk! possible such contractions. To obtain this result for Ck,
we start with the first index and then find a mate among the remaining 2k − 1 indices. Then we choose the next
unpaired index and find a mate among the remaining 2k − 3 indices. Proceeding in this manner, we have

C2k = (2k − 1) · (2k − 3) · · · 3 · 1 =
(2k)!

2kk!
. (1.80)
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Equivalently, we can take all possible permutations of the 2k indices, and then divide by 2kk! since permuta-
tion within a given pair results in the same contraction and permutation among the k pairs results in the same
contraction. For example, for k = 2, we have C4 = 3, and

〈xj1
xj2

xj3
xj4

〉 = A−1
j1j2

A−1
j3j4

+ A−1
j1j3

A−1
j2j4

+ A−1
j1j4

A−1
j2j3

. (1.81)

1.5 Appendix : Bayesian Statistics

Let the probability of a discrete event A be P (A). We now introduce two additional probabilities. The joint
probability for events A and B together is written P (A ∩ B). The conditional probability of B given A is P (B|A). We
can compute the joint probability P (A ∩ B) = P (B ∩ A) in two ways:

P (A ∩ B) = P (A|B) · P (B) = P (B|A) · P (A) . (1.82)

Thus,

P (A|B) =
P (B|A) · P (A)

P (B)
, (1.83)

a result known as Bayes’ theorem. Now suppose the ‘event space’ is partitioned as {Ai}. Then

P (B) =
∑

i

P (B|Ai) · P (Ai) . (1.84)

We then have

P (Ai|B) =
P (B|Ai) · P (Ai)

∑

j P (B|Aj) · P (Aj)
, (1.85)

a result sometimes known as the extended form of Bayes’ theorem. When the event space is a ‘binary partition’
{A,¬A}, we have

P (A|B) =
P (B|A) · P (A)

P (B|A) · P (A) + P (B|¬A) · P (¬A)
. (1.86)

Note that P (A|B) + P (¬A|B) = 1 (which follows from ¬¬A = A).

As an example, consider the following problem in epidemiology. Suppose there is a rare but highly contagious
disease A which occurs in 0.01% of the general population. Suppose further that there is a simple test for the
disease which is accurate 99.99% of the time. That is, out of every 10,000 tests, the correct answer is returned 9,999
times, and the incorrect answer is returned only once8. Now let us administer the test to a large group of people
from the general population. Those who test positive are quarantined. Question: what is the probability that
someone chosen at random from the quarantine group actually has the disease? We use Bayes’ theorem with the
binary partition {A,¬A}. Let B denote the event that an individual tests positive. Anyone from the quarantine
group has tested positive. Given this datum, we want to know the probability that that person has the disease.
That is, we want P (A|B). Applying eqn. 1.86 with

P (A) = 0.0001 , P (¬A) = 0.9999 , P (B|A) = 0.9999 , P (B|¬A) = 0.0001 ,

we find P (A|B) = 1
2 . That is, there is only a 50% chance that someone who tested positive actually has the disease,

despite the test being 99.99% accurate! The reason is that, given the rarity of the disease in the general population,
the number of false positives is statistically equal to the number of true positives.

8Epidemiologists define the sensitivity of a binary classification test as the fraction of actual positives which are correctly identified, and
the specificity as the fraction of actual negatives that are correctly identified. In our example in the text, the sensitivity and specificity are both
0.9999.
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For continuous distributions, we speak of a probability density. We then have

P (y) =

∫

dx P (y|x) · P (x) (1.87)

and

P (x|y) =
P (y|x) · P (x)

∫

dx′ P (y|x′) · P (x′)
. (1.88)

The range of integration may depend on the specific application.

The quantities P (Ai) are called the prior distribution. Clearly in order to compute P (B) or P (Ai|B) we must know
the priors, and this is usually the weakest link in the Bayesian chain of reasoning. If our prior distribution is not
accurate, Bayes’ theorem will generate incorrect results. One approach to obtaining the prior probabilities P (Ai)
is to obtain them from a maximum entropy construction.


