
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #9 SOLUTIONS

(1) For a system of noninteracting S = 0 bosons obeying the dispersion ε(k) = ~v|k|.

(a) Find the density of states per unit volume g(ε).

(b) Determine the critical temperature for Bose-Einstein condensation in three dimen-
sions.

(c) Find the condensate fraction n0/n for T < Tc.

(d) For this dispersion, is there a finite transition temperature in d = 2 dimensions? If

not, explain why. If so, compute T
(d=2)
c .

Solution :

(a) The density of states in d dimensions is

g(ε) =

∫

ddk

(2π)d
δ(ε − ~vk) =

Ωd

(2π)d
εd−1

(~v)d
.

(b) The condition for T = Tc is to write n = n(Tc, µ = 0):

n =

∞
∫

0

dε
g(ε)

eε/k
B

Tc − 1
=

1

2π2(~v)3

∞
∫

0

dε
ε2

eε/k
B

Tc − 1
=

ζ(3)

π2

(

k
B
Tc

~v

)3

.

Thus,

k
B
Tc =

(

π2

ζ(3)

)1/3

~v n1/3 .

(c) For T < Tc, we have

n = n0 +
ζ(3)

π2

(

k
B
T

~v

)3

.

Thus,
n0

n
= 1 −

(

T

Tc(n)

)3

.

(d) In d = 2 we have

n =
1

2π(~v)2

∞
∫

0

dε
ε

eε/k
B

Tc − 1
=

ζ(2)

2π

(

k
B
Tc

~v

)2

1



and hence

k
B
T (d=2)

c = ~v

√

2πn

ζ(2)
.

(2) Using the argument we used in class and in §5.4.2 of the notes, predict the surface
temperatures of the remaining planets in our solar system. In each case, compare your
answers with the most reliable source you can find. In cases where there are discrepancies,
try to come up with a convincing excuse.

Solution :

Relavant planetary data are available from

http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html

and from Wikipedia. According to the derivation in the notes, we have

T =

(

R⊙

2a

)1/2

T⊙ ,

where R⊙ = 6.96 × 105 km and T⊙ = 5780K. From this equation and the reported values
for a for each planet, we obtain the following table:

Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto

a (108 km) 0.576 1.08 1.50 2.28 7.78 14.3 28.7 45.0 59.1

T obs
surf (K) 340∗ 735† 288‡ 210 112 84 53 55 44

T pred
surf (K) 448 327 278 226 122 89.1 63.6 50.8 44.3

Table 1: Planetary data from GSU web site and from Wikipedia. Observed temperatures
are averages. ∗ mean equatorial temperature. † mean temperature below cloud cover.

Note that we have included Pluto, because since my childhood Pluto has always been the
ninth planet to me. We see that our simple formula works out quite well except for Mer-
cury and Venus. Mercury, being so close to the sun, has enormous temperature fluctuations
as a function of location. Venus has a whopping greenhouse effect.

(3) Read carefully the new and improved §5.5.4 of the lecture notes (“Melting and the
Lindemann criterion”). Using the data in Table 5.1, and looking up the atomic mass and
lattice constant of tantalum (Ta), find the temperature T

L
where the Lindemann criterion

predicts Ta should melt.
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Solution :

One finds the mass of tantalum is M = 181 amu, and the lattice constant is a = 3.30 Å.
Thus,

Θ⋆ =
109K

M [amu]
(

a[Å]
)2 = 55.3mK .

From the table in the lecture notes, the Debye temperature is Θ
D

= 246K and the melting
point is Tmelt = 2996K. The Lindemann temperature is

T
L

=

(

η2 Θ
D

Θ⋆
− 1

)

Θ
D

4
= 2674K ,

where η = 0.10. Close enough for government work.

(4) For ideal Fermi gases in d = 1, 2, and 3 dimensions, compute at T = 0 the average
fermion velocity.

Solution :

At T = 0 the average velocity is

〈v〉 =

k
F

∫

0

dk kd−1 ~k

m

/ k
F

∫

0

dk kd−1 =
d

d + 1
·

~k
F

m
.

The number density is

n =
gΩd

(2π)d

k
F

∫

0

dk kd−1 =
gΩd kd

F

(2π)d d
⇒ kF = 2π

(

d

gΩd

)1/d

n1/d .

Putting these together we can obtain the average velocity in terms of the density n and
physical constants. (OK! OK! I mean average speed!)

(5) Consider a three-dimensional Fermi gas of S = 1
2 particles obeying the dispersion

relation ε(k) = A |k|4.

(a) Compute the density of states g(ε).

(b) Compute the molar heat capacity.

(c) Compute the lowest order nontrivial temperature dependence for µ(T ) at low tem-
peratures. I.e. compute the O(T 2) term in µ(T ).
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Solution :

(a) The density of statesin d = 3 (g = 2S + 1 = 2) is given by

g(ε) =
1

π2

∞
∫

0

dk k2 δ
(

ε − ε(k)
)

=
1

π2
k2(ε)

dk

dε

∣

∣

∣

∣

∣

k=(ε/A)1/4

=
ε−1/4

4π2A3/4
.

(b) The molar heat capacity is

cV =
π2

3n
R g(ε

F
) k

B
T =

π2R

4
·
k

B
T

εF

,

where ε
F

= ~
2k2

F
/2m can be expressed in terms of the density using k

F
= (3π2n)1/3, which

is valid for any isotropic dispersion in d = 3. In deriving this formula we had to express

the density n, which enters in the denominator in the above expression, in terms of εF. But
this is easy:

n =

ε
F

∫

0

dε g(ε) =
1

3π2

(

εF

A

)3/4

.

(c) We have (Lecture Notes, §5.7.5)

δµ = −
π2

6
(k

B
T )2

g′(εF)

g(εF)
=

π2

24
·
(k

B
T )2

εF

.

Thus,

µ(n, T ) = εF(n) +
π2

24
·
(k

B
T )2

εF(n)
+ O(T 4) ,

where ε
F
(n) = ~

2

2m (3π2n)2/3.
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