
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #8 SOLUTIONS

(1) For the Dieterici equation of state,

p(V − Nb) = Nk
B
T e−Na/V k

B
T ,

find the virial coefficients B2(T ) and B3(T ).

Solution :

We first write the equation of state as p = (n, T ) where n = N/V :

p =
nk

B
T

1 − bn
e−an/k

B
T .

Next, we expand in powers of the density n:

p = nk
B
T

(

1 + bn + b2n2 + . . .
) (

1 − βan + 1

2
β2a2n2 + . . .

)

= nk
B
T

[

1 +
(

b − βa
)

n +
(

b2 − βab + 1

2
β2a2

)

n2 + . . .
]

= nk
B
T

[

1 + B2 n + B3 n2 + . . .
]

,

where β = 1/k
B
T . We can now read off the virial coefficients:

B2(T ) = b −
a

k
B
T

, B3 = b2 −
ab

k
B
T

+
a2

2k2
B
T 2

.

(2) Consider a gas of particles with dispersion ε(k) = ε0 |kℓ|5/2, where ε0 is an energy scale
and ℓ is a length scale.

(a) Find the density of states g(ε) in d = 2 and d = 3 dimensions.

(b) Find the virial coefficients B2(T ) and B3(T ) in d = 2 and d = 3 dimensions.

(c) Find the heat capacity CV (T ) in d = 3 dimensions for photon statistics.

Solution :

(a) For ε(k) = ε0 |kℓ|α we have

g(ε) =

∫

ddk

(2π)d
δ
(

ε − ε(k)
)

=
Ωd

(2π)

∞
∫

0

dk kd−1
δ
(

k − (ε/ε0)
1/α/ℓ

)

αε
0
ℓα kα−1

=
Ωd

(2π)d
1

αε
0
ℓd

(

ε

ε
0

)
d

α
−1

Θ(ε) .
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Thus, for α = 5

2
,

gd=2(ε) =
1

5πε
0
ℓ2

(

ε

ε
0

)

−1/5

Θ(ε) , gd=3(ε) =
1

5πε
0
ℓ3

(

ε

ε
0

)1/5

Θ(ε) .

(b) We must compute the coefficients

Cj =

∞
∫

−∞

dε g(ε) e−jε/k
B

T =
Ωd

(2π)d
1

αε
0
ℓd

∞
∫

0

dε

(

ε

ε
0

)
d

α
−1

e−jε/k
B

T

=
Ωd Γ(d/α)

(2π)d
1

αℓd

(

k
B
T

jε
0

)d/α

≡ j−d/α λ−d
T ,

where

λT ≡
2πℓ

[

Ωd Γ
(

d
α

)

/α
]1/d

(

ε0

k
B
T

)1/α

.

Then

B2(T ) = ∓
C2

2C2
1

= ∓2−
(

d

α
+1

)

λd
T

B3(T ) =
C2

2

C4
1

−
2C3

C3
1

=

[

4−
d

α − 2

3
· 3−

d

α

]

λ2d
T .

We have α = 5

2
, so d

α = 4

5
for d = 2 and 6

5
for d = 3.

(c) For photon statistics, the energy is

E(T, V ) = V

∞
∫

−∞

dε g(ε) ε
1

eε/k
B

T − 1
=

V Ωd ε0

(2πℓ)d α
Γ
(

d
α + 1

)

ζ
(

d
α + 1

)

(

k
B
T

ε
0

)
d

α
+1

Thus,

CV =
∂E

∂T
=

V Ωd k
B

(2πℓ)d α
Γ
(

d
α + 2

)

ζ
(

d
α + 1

)

(

k
B
T

ε
0

)
d

α

.

(3) At atmospheric pressure, what would the temperature T have to be in order that the
electromagnetic energy density should be identical to the energy density of a monatomic
ideal gas?

Solution :

The pressure is p = 1.0 atm ≃ 105 Pa. We set

E

V
= 3

2
p =

2π2

30

(k
B
T )4

(~c)3
,
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and solve for T :

T =
1

1.38 × 10−23 J/K
·

[

45

2π2
· (105 Pa) ·

(

1970 eV Å · 1.602 × 10−19 J

eV
· 10−10 m

Å

)3

]1/4

= 1.19 × 105 K .

(4) Find the internal energy and heat capacity for a two-dimensional crystalline insulator,
according to the Debye model.

Solution :

We have

Ω(T, V ) = Nk
B
T

∞
∫

0

dω g(ω) ln

[

2 sinh

(

~ω

2k
B
T

)

]

.

The internal energy is given by

E(T, V ) =
∂(βΩ)

∂β
= 1

2
N

∞
∫

0

dω g(ω) ~ω ctnh

(

~ω

2k
B
T

)

.

In the three-dimensional Debye model, the phonon density of states per unit cell is

g(ω) =
9ω2

ω3
D

Θ(ω
D
− ω) ,

where ω
D

is the Debye frequency. Thus,

E(T ) =
9N~

2ω3
D

ω
D

∫

0

dω ω3 ctnh

(

~ω

2k
B
T

)

=
72N

(~ωD)3
(k

B
T )4

~ω
D

2k
B

T
∫

0

ds s3 ctnh (s) .

In d = 2 dimensions, we must replace the phonon density of states with

g(ω) =
4ω

ω2
D

Θ(ω
D
− ω) .
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This guarantees that the integrated phonon density of states per unit cell is 2, which is the
number of acoustic phonon modes in two dimensions. We then have

E(T ) =
2~

ω2
D

N

ω
D

∫

0

dω ω2 ctnh

(

~ω

2k
B
T

)

=
16N

(~ωD)2
(k

B
T )3

~ω
D

2k
B

T
∫

0

ds s2 ctnh (s) .

The heat capacity is

CV =
∂E

∂T
=

N~
2

k
B
T 2ω2

D

ω
D

∫

0

dω ω3 csch2

(

~ω

2k
B
T

)

= 16Nk
B

(

k
B
T

~ωD

)2

~ω
D

2k
B

T
∫

0

ds s2 csch 2(s) .

One can check that limT→∞
CV (T ) = 2Nk

B
, which is the appropriate Dulong-Petit limit.
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