PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT \#6 SOLUTIONS

(1) $\nu=8$ moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the thermodynamic path for which is an ellipse in the (V, p) plane. The center of the ellipse lies at $\left(V_{0}, p_{0}\right)=\left(0.25 \mathrm{~m}^{3}, 1.0 \mathrm{bar}\right)$. The semimajor axes of the ellipse are $\Delta V=0.10 \mathrm{~m}^{3}$ and $\Delta p=0.20$ bar.
(a) What is the temperature at $(V, p)=\left(V_{0}+\Delta V, p_{0}\right)$?
(b) Compute the net work per cycle done by the gas.
(c) Compute the internal energy difference $E\left(V_{0}-\Delta V, p_{0}\right)-E\left(V_{0}, p_{0}-\Delta p\right)$.
(d) Compute the heat Q absorbed by the gas along the upper half of the cycle.

Solution :
(a) The temperature is $T=p V / \nu R$. With $V=V_{0}+\Delta V=0.35 \mathrm{~m}^{3}$ and $p=p_{0}=1.0$ bar, we have

$$
T=\frac{\left(10^{5} \mathrm{~Pa}\right)\left(0.35 \mathrm{~m}^{3}\right)}{(8 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})}=530 \mathrm{~K} .
$$

(b) The area of an ellipse is π times the product of the semimajor axis lengths.

$$
\oint p d V=\pi(\Delta p)(\Delta V)=\pi\left(0.20 \times 10^{6} \text { bar }\right)\left(0.10 \mathrm{~m}^{3}\right)=6.3 \mathrm{~kJ} .
$$

(c) For a diatomic ideal gas, $E=\frac{5}{2} p V$. Thus,

$$
\Delta E=\frac{5}{2}\left(V_{0} \Delta p-p_{0} \Delta V\right)=\frac{5}{2}\left(-0.05 \times 10^{5} \mathrm{~J}\right)=-13 \mathrm{~kJ} .
$$

(d) We have $Q=\Delta E+W$, with

$$
W=2 p_{0} \Delta V+\frac{\pi}{2}(\Delta p)(\Delta V)=23 \mathrm{~kJ},
$$

which is the total area under the top half of the ellipse. The difference in energy is given by $\Delta E=\frac{5}{2} p_{0} \cdot 2 \Delta V=5 p_{0} \Delta V$, so

$$
Q=\Delta E+W=7 p_{0} \Delta V+\frac{\pi}{2}(\Delta p)(\Delta V)=73 \mathrm{~kJ} .
$$

(2) Determine which of the following differentials are exact and which are inexact.
(a) $x y d x+x y d y$
(b) $\left(x+y^{-1}\right) d x-x y^{-2} d y$
(c) $x y^{3} d x+3 x^{2} y^{2} d y$
(d) $(\ln y+\ln z) d x+x y^{-1} d y+x z^{-1} d z$

Solution:
Recall $d F=\sum_{i} A_{i}(\boldsymbol{x}) d x_{i}$ is exact if $\frac{\partial A_{i}}{\partial x_{j}}=\frac{\partial A_{j}}{\partial x_{i}}$ for all i and j. Thus,
(a) $d F=x y d x+x y d y$ is inexact, since $\partial A_{x} / \partial y=x$ but $\partial A_{y} / \partial x=y$. However, $d F=$ $x y d(x+y),(x y)^{-1} d F=d(x+y)$ is exact.
(b) $d F=\left(x+y^{-1}\right) d x-x y^{-2} d y=d\left(\frac{1}{2} x^{2}+x y^{-1}\right)$ is exact.
(c) $đ F=x y^{3} d x+3 x^{2} y^{2} d y$ is inexact, since $\partial A_{x} / \partial y=3 x y^{2}$ but $\partial A_{y} / \partial x=6 x y^{2}$. However, $d F=x d\left(x y^{3}\right)$, so $x^{-1} d F=d\left(x y^{3}\right)$ is exact.
(d) $d F=(\ln y+\ln z) d x+x y^{-1} d y+x z^{-1} d z=d(x \ln y+x \ln z)$ is exact.
(3) Liquid mercury at atmospheric pressure and temperature $T=0^{\circ} \mathrm{C}$ has a molar volume of $14.72 \mathrm{~cm}^{3} / \mathrm{mol}$ and a specific heat a constant pressure of $c_{p}=28.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$. Its coefficient of expansion is $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}=1.81 \times 10^{-4} / \mathrm{K}$ and its isothermal compressibility is $\kappa_{T}=$ $-\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{T}=3.88 \times 10^{-12} \mathrm{~cm}^{2} /$ dyn. Find its specific heat at constant volume c_{V} and the ratio $\gamma=c_{p} / c_{V}$. [Reif problem 5.10]

Solution :
According to eqn. (2.307) in the notes,

$$
c_{p}-c_{V}=\frac{v T \alpha_{p}^{2}}{\kappa_{T}}=\frac{\left(14.72 \times 10^{-6} \mathrm{~m}^{3} / \mathrm{mol}\right)(273 \mathrm{~K})\left(1.81 \times 10^{-4} / \mathrm{K}\right)^{2}}{3.88 \times 10^{-11} \mathrm{~m} \mathrm{~s}^{2} / \mathrm{kg}}=3.39 \mathrm{~J} / \mathrm{K}
$$

Thus,

$$
c_{V}=24.6 \mathrm{~J} / \mathrm{K} \quad, \quad \gamma=\frac{c_{p}}{c_{v}}=\frac{28.0}{24.6}=1.14 .
$$

(4) ν moles of an ideal diatomic gas are driven along the cycle depicted in Fig. 1. Section AB is an adiabatic free expansion; section BC is an isotherm at temperature $T_{\mathrm{A}}=T_{\mathrm{B}}=T_{\mathrm{C}}$; CD is an isobar, and DA is an isochore. The volume at B is given by $V_{\mathrm{B}}=(1-x) V_{\mathrm{A}}+x V_{\mathrm{C}}$, where $0 \leq x \leq 1$.
(a) Find an expression for the total work $W_{\text {cycle }}$ in terms of $\nu, T_{\mathrm{A}^{\prime}}, V_{\mathrm{A}}, V_{\mathrm{C}}$, and x.
(b) Suppose $V_{\mathrm{A}}=1.0 \mathrm{~L}, V_{\mathrm{C}}=5.0 \mathrm{~L}, T_{\mathrm{A}}=500 \mathrm{~K}$, and $\nu=5$. What is the volume V_{B} such that $W_{\text {cycle }}=0$?

Figure 1: Thermodynamic cycle for problem 4, consisting of adiabatic free expansion (AB), isotherm (BC), isobar (CD), and isochore (DA).

Solution :
(a) We have $W_{\mathrm{AB}}=W_{\mathrm{DA}}=0$, and

$$
\begin{aligned}
W_{\mathrm{BC}} & =\int_{\mathrm{B}}^{\mathrm{C}} p d V=\nu R T_{\mathrm{A}} \int_{\mathrm{B}}^{\mathrm{C}} \frac{d V}{V}=\nu R T_{\mathrm{A}} \ln \left(\frac{V_{\mathrm{C}}}{V_{\mathrm{B}}}\right) \\
W_{\mathrm{CD}} & =\int_{\mathrm{C}}^{\mathrm{D}} p d V=p_{\mathrm{C}}\left(V_{\mathrm{D}}-V_{\mathrm{C}}\right)=-\nu R T_{\mathrm{A}}\left(1-\frac{V_{\mathrm{A}}}{V_{\mathrm{C}}}\right) .
\end{aligned}
$$

Thus,

$$
W_{\mathrm{CYC}}=\nu R T_{\mathrm{A}}\left[\ln \left(\frac{V_{\mathrm{C}}}{V_{\mathrm{B}}}\right)-1+\frac{V_{\mathrm{A}}}{V_{\mathrm{C}}}\right] .
$$

(b) Setting $V_{\mathrm{B}}=(1-x) V_{\mathrm{A}}+x V_{\mathrm{C}}$, and defining $r \equiv V_{\mathrm{A}} / V_{\mathrm{C}}$, we have

$$
W_{\mathrm{CYC}}=\nu R T_{\mathrm{A}}(-\ln (x+(1-x) r)+1-r),
$$

and setting $W_{\mathrm{CYC}}=0$ we obtain $x=x^{*}$, with

$$
x^{*}=\frac{e^{r-1}-r}{1-r} .
$$

For $V_{\mathrm{A}}=1.0 \mathrm{~L}$ and $V_{\mathrm{C}}=5.0 \mathrm{~L}$, we have $r=\frac{1}{5}$ and $x^{*}=0.31$, corresponding to $V_{\mathrm{B}}=2.2 \mathrm{~L}$.
(5) A strange material found stuck to the bottom of a seat in Warren Lecture Hall 2001 obeys the thermodynamic relation $E(S, V, N)=a S^{6} / V^{2} N^{3}$, where a is a dimensionful constant.
(a) What are the MKS dimensions of a ?
(b) Find the equation of state relating p, V, N, and T.
(c) Find the coefficient of thermal expansion $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}$. Express your answer in terms of intensive quantities p, T, and $n=N / V$.
(d) Find the isothermal compressibility $\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}$. Express your answer in terms of intensive quantities p, T, and $n=N / V$.

Solution :
(a) From $[E]=\mathrm{J},[S]=\mathrm{J} / \mathrm{K}$, and $[V]=\mathrm{m}^{3}$, we obtain $[a]=\mathrm{m}^{6} \mathrm{~K}^{5} / \mathrm{J}^{5}$.
(b) We have

$$
T=\left(\frac{\partial E}{\partial S}\right)_{V N}=\frac{6 a S^{5}}{V^{2} N^{3}} \quad, \quad p=-\left(\frac{\partial E}{\partial V}\right)_{S N}=\frac{2 a S^{6}}{V^{3} N^{3}} .
$$

We can eliminate S by finding the ratio T^{6} / p^{5} :

$$
\frac{T^{6}}{p^{5}}=\frac{6^{6}}{2^{5}} \cdot \frac{a V^{3}}{N^{3}}=1458 a n^{-3} .
$$

This is an equation of state, which we can recast as

$$
p(T, n)=\frac{T^{6 / 5} n^{3 / 5}}{(1458 a)^{1 / 5}} .
$$

Contrast this with the ideal gas law, $p=n k_{\mathrm{B}} T$. For parts (c) and (d) it is useful to take the logarithm, and obtain

$$
6 \ln T=5 \ln p+3 \ln V-3 \ln N+\ln (1458 a) .
$$

(c) The coefficient of volume expansion is

$$
\alpha_{p}=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p N}=\left(\frac{\partial \ln V}{\partial T}\right)_{p N}=\frac{2}{T} .
$$

(d) The isothermal compressibility is

$$
\kappa_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T N}=-\left(\frac{\partial \ln V}{\partial p}\right)_{T N}=\frac{5}{3 p} .
$$

