
PHYSICS 140A : STATISTICAL PHYSICS

HW ASSIGNMENT #3 SOLUTIONS

(1) Consider a generalization of the situation in §4.4 of the notes where now three reser-
voirs are in thermal contact, with any pair of systems able to exchange energy.

(a) Assuming interface energies are negligible, what is the total density of states D(E)?
Your answer should be expressed in terms of the densities of states functions D1,2,3

for the three individual systems.

(b) Find an expression for P (E1, E2), which is the joint probability distribution for sys-
tem 1 to have energy E1 while system 2 has energy E2 and the total energy of all
three systems is E1 + E2 + E3 = E.

(c) Extremize P (E1, E2) with respect to E1,2. Show that this requires the temperatures
for all three systems must be equal: T1 = T2 = T3. Writing Ej = E∗

j + δEj , where E∗

j

is the extremal solution (j = 1, 2), expand lnP (E∗

1 + δE1 , E∗

2 + δE2) to second order
in the variations δEj . Remember that

S = k
B

lnD ,

(
∂S

∂E

)

V,N

=
1

T
,

(
∂2S

∂E2

)

V,N

= − 1

T 2CV

.

(d) Assuming a Gaussian form for P (E1, E2) as derived in part (c), find the variance of
the energy of system 1,

Var(E1) =
〈
(E1 − E∗

1)2
〉

.

Solution :

(a) The total density of states is a convolution:

D(E) =

∞∫

−∞

dE1

∞∫

−∞

dE2

∞∫

−∞

dE3 D1(E1)D2(E2)D3(E3) δ(E − E1 − E2 − E3) .

(b) The joint probability density P (E1, E2) is given by

P (E1, E2) =
D1(E2)D2(E2)D3(E − E1 − E2)

D(E)
.

(c) We set the derivatives ∂ ln P/∂E1,2 = 0, which gives

∂ ln P

∂E1

=
∂ ln D1

∂E1

− ∂D3

∂E3

= 0 ,
∂ lnP

∂E2

=
∂ ln D3

∂E2

− ∂D3

∂E3

= 0 ,
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where E3 = E − E1 − E2 in the argument of D3(E3). Thus, we have

∂ ln D1

∂E1

=
∂ ln D2

∂E2

=
∂ ln D3

∂E3

≡ 1

T
.

Expanding ln P (E∗

1 + δE1 , E∗

2 + δE2) to second order in the variations δEj , we find the
first order terms cancel, leaving

ln P (E∗

1 + δE1 , E∗

2 + δE2) = ln P (E∗

1 , E∗

2) − (δE1)
2

2k
B
T 2C1

− (δE2)
2

2k
B
T 2C2

− (δE1 + δE2)
2

2k
B
T 2C3

+ . . . ,

where ∂2 ln Dj/∂E2 = −1/2k
B
T 2Cj , with Cj the heat capacity at constant volume and

particle number. Thus,

P (E1, E2) =

√
det(C−1)

2πk
B
T 2

exp
(
− 1

2k
B
T 2

C−1
ij δEi δEj

)
,

where the matrix C−1 is defined as

C−1 =

(
C−1

1 + C−1
3 C−1

3

C−1
3 C−1

2 + C−1
3

)
.

One finds
det(C−1) = C−1

1 C−1
2 + C−1

1 C−1
3 + C−1

2 C−1
3 .

The prefactor in the above expression for P (E1, E2) has been fixed by the normalization
condition

∫
dE1

∫
dE2 P (E1, E2) = 1.

(d) Integrating over E2, we obtain P (E1):

P (E1) =

∞∫

−∞

dE2 P (E1, E2) =
1√

2πk
B
C̃1T

2

e−(δE
1
)2/2k

B
eC
1
T 2

,

where

C̃1 =
C−1

2 + C−1
3

C−1
1 C−1

2 + C−1
1 C−1

3 + C−1
2 C−1

3

.

Thus,

〈(δE1)
2〉 =

∞∫

−∞

dE1 (δE1)
2 = k

B
C̃1T

2 .

(2) Consider a two-dimensional gas of identical classical, noninteracting, massive rela-

tivistic particles with dispersion ε(p) =
√

p2c2 + m2c4.

(a) Compute the free energy F (T, V,N).
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(b) Find the entropy S(T, V,N).

(c) Find an equation of state relating the fugacity z = eµ/k
B

T to the temperature T and
the pressure p.

Solution :

(a) We have Z = (ζA)N/N ! where A is the area and

ζ(T ) =

∫
d2p

h2
e−β

√
p2c2+m2c4 =

2π

(βhc)2
(
1 + βmc2

)
e−βmc2 .

To obtain this result it is convenient to change variables to u = β
√

p2c2 + m2c4, in which
case p dp = u du/β2c2, and the lower limit on u is mc2. The free energy is then

F = −k
B
T ln Z = Nk

B
T ln

(
2π~

2c2N

(k
B
T )2A

)
− Nk

B
T ln

(
1 +

mc2

k
B
T

)
+ Nmc2 .

where we are taking the thermodynamic limit with N → ∞.

(b) We have

S = −∂F

∂T
= −Nk

B
ln

(
2π~

2c2N

(k
B
T )2A

)
+ Nk

B
ln

(
1 +

mc2

k
B
T

)
+ Nk

B

(
mc2 + 2k

B
T

mc2 + k
B
T

)
.

(c) The grand partition function is

Ξ(T, V, µ) = e−βΩ = eβpV =

∞∑

N=0

ZN (T, V,N) eβµN .

We then find Ξ = exp
(
ζA eβµ

)
, and

p =
(k

B
T )3

2π(~c)2

(
1 +

mc2

k
B
T

)
e(µ−mc2)/k

B
T .

Note that

n =
∂(βp)

∂µ
=

p

k
B
T

=⇒ p = nk
B
T .

(3) A three-level system has energy levels ε0 = 0, ε1 = ∆, and ε2 = 4∆. Find the free
energy F (T ), the entropy S(T ) and the heat capacity C(T ).

Solution :

We have
Z = Tr e−βH = 1 + e−β∆ + e−4β∆ .
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The free energy is

F = −k
B
T ln Z = −k

B
T ln

(
1 + e−∆/k

B
T + e−4∆/k

B
T
)

.

To find the entropy S, we differentiate with respect to temperature:

S = −∂F

∂T

∣∣∣∣
V,N

= k
B

ln
(
1 + e−∆/k

B
T + e−4∆/k

B
T
)

+
∆

T
· e−∆/k

B
T + 4e−4∆/k

B
T

1 + e−∆/k
B

T + e−4∆/k
B

T
.

Now differentiate with respect to T one last time to find

CV,N = k
B

(
∆

k
B
T

)2
· e−∆/k

B
T + 16 e−4∆/k

B
T + 9 e−5∆/k

B
T

(
1 + e−∆/k

B
T + e−4∆/k

B
T
)2 .

(4) Consider a many-body system with Hamiltonian Ĥ = 1
2N̂(N̂ − 1)U , where N̂ is the

particle number and U > 0 is an interaction energy. Assume the particles are identical and
can be described using Maxwell-Boltzmann statistics, as we have discussed. Assuming
µ = 0, plot the entropy S and the average particle number N as functions of the scaled
temperature k

B
T/U . (You will need to think about how to impose a numerical cutoff in

your calculations.)

Solution :

The grand partition function is

Ξ(T, µ) = e−βΩ = eβpV =
∞∑

N=0

e−N(N−1)βU/2 ,

where we have taken µ = 0 and we have assumed that each state of definite particle
number ,|N 〉, is nondegenerate. We then have the grand potential

Ω(T, µ) = −k
B
T ln Ξ = −k

B
T ln

(
∞∑

N=0

e−N(N−1) U/2k
B

T

)

The entropy is

S = −∂Ω

∂T
= k

B
ln

(
∞∑

N=0

e−N(N−1) U/2k
B

T

)
+

U

2T
·
∑

∞

N=0 N(N − 1) e−N(N−1)U/2k
B

T

∑
∞

N=0 e−N(N−1) U/2k
B

T
.

This must be evaluated numerically. The results are shown in Fig. 1. Note that limT→0 S(T ) =
k

B
ln 2, which indicates a doubly degenerate ground state. This is because both |N = 0 〉

and |N = 1 〉 have energy E0 = E1 = 0.
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Figure 1: Entropy as a function of dimensionless temperature for problem #4. Note that
S(T = 0) = ln 2 because the states |N = 0 〉 and |N = 1 〉 are degenerate.
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