PHYSICS 140A : STATISTICAL PHYSICS
 MIDTERM EXAM SOLUTIONS

Consider a classical gas of indistinguishable particles in three dimensions with Hamiltonian

$$
\hat{H}=\sum_{i=1}^{N}\left\{A\left|\boldsymbol{p}_{i}\right|^{3}-\mu_{0} H S_{i}\right\},
$$

where A is a constant, and where $S_{i} \in\{-1,0,+1\}$ (i.e. there are three possible spin polarization states).
(a) Compute the free energy $F_{\text {gas }}(T, H, V, N)$.
(b) Compute the magnetization density $m_{\text {gas }}=M_{\text {gas }} / V$ as a function of temperature, pressure, and magnetic field.

The gas is placed in thermal contact with a surface containing N_{s} adsorption sites, each with adsorption energy $-\Delta$. The surface is metallic and shields the adsorbed particles from the magnetic field, so the field at the surface may be approximated by $H=0$.
(c) Find the Landau free energy for the surface, $\Omega_{\text {surf }}\left(T, N_{\mathrm{s}}, \mu\right)$.
(d) Find the fraction $f_{0}(T, \mu)$ of empty adsorption sites.
(e) Find the gas pressure $p^{*}(T, H)$ at which $f_{0}=\frac{1}{2}$.

Solution :

(a) The single particle partition function is

$$
\zeta(T, V, H)=V \int \frac{d^{3} p}{h^{3}} e^{-A p^{3} / k_{\mathrm{B}} T} \sum_{S=-1}^{1} e^{\mu_{0} H S / k_{\mathrm{B}} T}=\frac{4 \pi V k_{\mathrm{B}} T}{3 A h^{3}} \cdot\left(1+2 \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)\right) .
$$

The N-particle partition function is $Z_{\text {gas }}(T, H, V, N)=\zeta^{N} / N$!, hence

$$
F_{\text {gas }}=-N k_{\mathrm{B}} T\left[\ln \left(\frac{4 \pi V k_{\mathrm{B}} T}{3 N A h^{3}}\right)+1\right]-N k_{\mathrm{B}} T \ln \left(1+2 \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)\right)
$$

(b) The magnetization density is

$$
m_{\text {gas }}(T, p, H)=-\frac{1}{V} \frac{\partial F}{\partial H}=\frac{p \mu_{0}}{k_{\mathrm{B}} T} \cdot \frac{2 \sinh \left(\mu_{0} H / k_{\mathrm{B}} T\right)}{1+2 \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)}
$$

We have used the ideal gas law, $p V=N k_{\mathrm{B}} T$ here.
(c) There are four possible states for an adsorption site: empty, or occupied by a particle with one of three possible spin polarizations. Thus, $\Xi_{\text {surf }}\left(T, N_{\mathrm{s}}, \mu\right)=\xi^{N_{\mathrm{s}}}$, with

$$
\xi(T, \mu)=1+3 e^{(\mu+\Delta) / k_{\mathrm{B}} T} .
$$

Thus,

$$
\Omega_{\text {surf }}\left(T, N_{\mathrm{s}}, \mu\right)=-N_{\mathrm{s}} k_{\mathrm{B}} T \ln \left(1+3 e^{(\mu+\Delta) / k_{\mathrm{B}} T}\right)
$$

(d) The fraction of empty adsorption sites is $1 / \xi$, i.e.

$$
f_{0}(T, \mu)=\frac{1}{1+3 e^{(\mu+\Delta) / k_{\mathrm{B}} T}}
$$

(e) Setting $f_{0}=\frac{1}{2}$, we obtain the equation $3 e^{(\mu+\Delta) / k_{\mathrm{B}} T}=1$, or

$$
e^{\mu / k_{\mathrm{B}} T}=\frac{1}{3} e^{-\Delta / k_{\mathrm{B}} T} .
$$

We now need the fugacity $z=e^{\mu / k_{\mathrm{B}} T}$ in terms of p, T, and H. To this end, we compute the Landau free energy of the gas,

$$
\Omega_{\mathrm{gas}}=-p V=-k_{\mathrm{B}} T \zeta e^{\mu / k_{\mathrm{B}} T} .
$$

Thus,

$$
p^{*}(T, H)=\frac{k_{\mathrm{B}} T \zeta}{V} e^{\mu / k_{\mathrm{B}} T}=\frac{4 \pi\left(k_{\mathrm{B}} T\right)^{2}}{9 A h^{3}} \cdot\left(1+2 \cosh \left(\mu_{0} H / k_{\mathrm{B}} T\right)\right) e^{-\Delta / k_{\mathrm{B}} T}
$$

