PHYSICS 140A : STATISTICAL PHYSICS MIDTERM EXAM SOLUTIONS

Consider a classical gas of indistinguishable particles in three dimensions with Hamiltonian

$$\hat{H} = \sum_{i=1}^{N} \left\{ A \left| \boldsymbol{p}_{i} \right|^{3} - \mu_{0} H S_{i} \right\},\$$

where A is a constant, and where $S_i \in \{-1, 0, +1\}$ (*i.e.* there are three possible spin polarization states).

(a) Compute the free energy $F_{gas}(T, H, V, N)$.

(b) Compute the magnetization density $m_{gas} = M_{gas}/V$ as a function of temperature, pressure, and magnetic field.

The gas is placed in thermal contact with a surface containing N_s adsorption sites, each with adsorption energy $-\Delta$. The surface is metallic and shields the adsorbed particles from the magnetic field, so the field at the surface may be approximated by H = 0.

(c) Find the Landau free energy for the surface, $\varOmega_{\mathsf{surf}}(T,N_{\mathsf{s}},\mu).$

(d) Find the fraction $f_0(T, \mu)$ of empty adsorption sites.

(e) Find the gas pressure $p^*(T, H)$ at which $f_0 = \frac{1}{2}$.