PHYSICS 140A : STATISTICAL PHYSICS
 HW ASSIGNMENT \#6

(1) $\nu=8$ moles of a diatomic ideal gas are subjected to a cyclic quasistatic process, the thermodynamic path for which is an ellipse in the (V, p) plane. The center of the ellipse lies at $\left(V_{0}, p_{0}\right)=\left(0.25 \mathrm{~m}^{3}, 1.0 \mathrm{bar}\right)$. The semimajor axes of the ellipse are $\Delta V=0.10 \mathrm{~m}^{3}$ and $\Delta p=0.20$ bar.
(a) What is the temperature at $(V, p)=\left(V_{0}+\Delta V, p_{0}\right)$?
(b) Compute the net work per cycle done by the gas.
(c) Compute the internal energy difference $E\left(V_{0}-\Delta V, p_{0}\right)-E\left(V_{0}, p_{0}-\Delta p\right)$.
(d) Compute the heat Q absorbed by the gas along the upper half of the cycle.
(2) Determine which of the following differentials are exact and which are inexact.
(a) $x y d x+x y d y$
(b) $\left(x+y^{-1}\right) d x-x y^{-2} d y$
(c) $x y^{3} d x+3 x^{2} y^{2} d y$
(d) $(\ln y+\ln z) d x+x y^{-1} d y+x z^{-1} d z$
(3) Liquid mercury at atmospheric pressure and temperature $T=0^{\circ} \mathrm{C}$ has a molar volume of $14.72 \mathrm{~cm}^{3} / \mathrm{mol}$ and a specific heat a constant pressure of $c_{p}=28.0 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$. Its coefficient of expansion is $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}=1.81 \times 10^{-4} / \mathrm{K}$ and its isothermal compressibility is $\kappa_{T}=$ $-\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{T}=3.88 \times 10^{-12} \mathrm{~cm}^{2} /$ dyn. Find its specific heat at constant volume c_{V} and the ratio $\gamma=c_{p} / c_{V}$. [Reif problem 5.10]
(4) ν moles of an ideal diatomic gas are driven along the cycle depicted in Fig. 1. Section AB is an adiabatic free expansion; section BC is an isotherm at temperature $T_{\mathrm{A}}=T_{\mathrm{B}}=T_{\mathrm{C}}$; CD is an isobar, and DA is an isochore. The volume at B is given by $V_{\mathrm{B}}=(1-x) V_{\mathrm{A}}+x V_{\mathrm{C}}$, where $0 \leq x \leq 1$.
(a) Find an expression for the total work $W_{\text {cycle }}$ in terms of $\nu, T_{\mathrm{A}}, V_{\mathrm{A}}, V_{\mathrm{C}}$, and x.
(b) Suppose $V_{\mathrm{A}}=1.0 \mathrm{~L}, V_{\mathrm{C}}=5.0 \mathrm{~L}, T_{\mathrm{A}}=500 \mathrm{~K}$, and $\nu=5$. What is the volume V_{B} such that $W_{\text {cycle }}=0$?

Figure 1: Thermodynamic cycle for problem 4, consisting of adiabatic free expansion (AB), isotherm ($B C$), isobar (CD), and isochore (DA).
(5) A strange material found stuck to the bottom of a seat in Warren Lecture Hall 2001 obeys the thermodynamic relation $E(S, V, N)=a S^{6} / V^{2} N^{3}$, where a is a dimensionful constant.
(a) What are the MKS dimensions of a ?
(b) Find the equation of state relating p, V, N, and T.
(c) Find the coefficient of thermal expansion $\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p}$. Express your answer in terms of intensive quantities p, T, and $n=N / V$.
(d) Find the isothermal compressibility $\kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_{T}$. Express your answer in terms of intensive quantities p, T, and $n=N / V$.

