PHYSICS 140A : STATISTICAL PHYSICS HW ASSIGNMENT #3

(1) Consider a generalization of the situation in §4.4 of the notes where now three reservoirs are in thermal contact, with any pair of systems able to exchange energy.

- (a) Assuming interface energies are negligible, what is the total density of states D(E)? Your answer should be expressed in terms of the densities of states functions $D_{1,2,3}$ for the three individual systems.
- (b) Find an expression for P(E₁, E₂), which is the joint probability distribution for system 1 to have energy E₁ while system 2 has energy E₂ and the total energy of all three systems is E₁ + E₂ + E₃ = E.
- (c) Extremize $P(E_1, E_2)$ with respect to $E_{1,2}$. Show that this requires the temperatures for all three systems must be equal: $T_1 = T_2 = T_3$. Writing $E_j = E_j^* + \delta E_j$, where E_j^* is the extremal solution (j = 1, 2), expand $\ln P(E_1^* + \delta E_1, E_2^* + \delta E_2)$ to second order in the variations δE_j . Remember that

(d) Assuming a Gaussian form for $P(E_1, E_2)$ as derived in part (c), find the variance of the energy of system 1,

$$\operatorname{Var}(E_1) = \left\langle (E_1 - E_1^*)^2 \right\rangle.$$

(2) Consider a two-dimensional gas of identical classical, noninteracting, massive relativistic particles with dispersion $\varepsilon(\mathbf{p}) = \sqrt{\mathbf{p}^2 c^2 + m^2 c^4}$.

- (a) Compute the free energy F(T, V, N).
- (b) Find the entropy S(T, V, N).
- (c) Find an equation of state relating the fugacity $z = e^{\mu/k_{\rm B}T}$ to the temperature *T* and the pressure *p*.

(3) A three-level system has energy levels $\varepsilon_0 = 0$, $\varepsilon_1 = \Delta$, and $\varepsilon_2 = 4\Delta$. Find the free energy F(T), the entropy S(T) and the heat capacity C(T).

(4) Consider a many-body system with Hamiltonian $\hat{H} = \frac{1}{2}\hat{N}(\hat{N} - 1)U$, where \hat{N} is the particle number and U > 0 is an interaction energy. Assume the particles are identical and can be described using Maxwell-Boltzmann statistics, as we have discussed. Assuming $\mu = 0$, plot the entropy S and the average particle number N as functions of the scaled temperature $k_{\rm B}T/U$. (You will need to think about how to impose a numerical cutoff in your calculations.)