PHYSICS 140A : STATISTICAL PHYSICS
 FINAL EXAMINATION
 (do all four problems)

(1) The entropy for a peculiar thermodynamic system has the form

$$
S(E, V, N)=N k_{\mathrm{B}}\left\{\left(\frac{E}{N \varepsilon_{0}}\right)^{1 / 3}+\left(\frac{V}{N v_{0}}\right)^{1 / 2}\right\}
$$

where ε_{0} and v_{0} are constants with dimensions of energy and volume, respectively.
(a) Find the equation of state $p=p(T, V, N)$.
[5 points]
(b) Find the work done along an isotherm in the (V, p) plane between points A and B in terms of the temperature T, the number of particles N, and the pressures p_{A} and p_{B}. [10 points]
(c) Find $\mu(T, p)$.
[10 points]
(2) Consider a set of N noninteracting crystalline defects characterized by a dipole moment $\boldsymbol{p}=p_{0} \hat{\boldsymbol{n}}$, where $\hat{\boldsymbol{n}}$ can point in any of six directions: $\pm \hat{\boldsymbol{x}}, \pm \hat{\boldsymbol{y}}$, and $\pm \hat{\boldsymbol{z}}$. In the absence of an external field, the energies for these configurations are $\varepsilon(\pm \hat{\boldsymbol{x}})=\varepsilon(\pm \hat{\boldsymbol{y}})=\varepsilon_{0}$ and $\varepsilon(\pm \hat{\boldsymbol{z}})=0$.
(a) Find the free energy $F(T, N)$.
[10 points]
(b) Now let there be an external electric field $\boldsymbol{E}=E \hat{\boldsymbol{z}}$. The energy in the presence of the field is augmented by $\Delta \varepsilon=-\boldsymbol{p} \cdot \boldsymbol{E}$. Compute the total dipole moment $\boldsymbol{P}=\sum_{i}\left\langle\boldsymbol{p}_{i}\right\rangle$. [5 points]
(c) Compute the electric susceptibility $\chi_{E}^{z z}=\frac{1}{V} \frac{\partial P_{z}}{\partial E_{z}}$ at $\boldsymbol{E}=0$.
[5 points]
(d) Find an expression for the entropy $S(T, N, E)$ when $\varepsilon_{0}=0$.
[5 points]
(3) A bosonic gas is known to have a power law density of states $g(\varepsilon)=A \varepsilon^{\sigma}$ per unit volume, where σ is a real number.
(a) Experimentalists measure T_{c} as a function of the number density n and make a log\log plot of their results. They find a beautiful straight line with slope $\frac{3}{7}$. That is, $T_{\mathrm{c}}(n) \propto n^{3 / 7}$. Assuming the phase transition they observe is an ideal Bose-Einstein condensation, find the value of σ.
[5 points]
(b) For $T<T_{\mathrm{c}}$, find the heat capacity C_{V}.
[5 points]
(c) For $T>T_{\mathrm{c}}$, find an expression for $p(T, z)$, where $z=e^{\beta \mu}$ is the fugacity. Recall the definition of the polylogarithm (or generalized Riemann zeta function) ${ }^{1}$,

$$
\operatorname{Li}_{q}(z) \equiv \frac{1}{\Gamma(q)} \int_{0}^{\infty} d t \frac{t^{q-1}}{z^{-1} e^{t}-1}=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{q}},
$$

where $\Gamma(q)=\int_{0}^{\infty} d t t^{q-1} e^{-t}$ is the Gamma function.
[5 points]
(d) If these particles were fermions rather than bosons, find (i) the Fermi energy $\varepsilon_{\mathrm{F}}(n)$ and (ii) the pressure $p(n)$ as functions of the density n at $T=0$.
[10 points]
(4) Provide brief but substantial answers to the following:
(a) Consider a three-dimensional gas of N classical particles of mass m in a uniform gravitational field g. Assume $z \geq 0$ and $\boldsymbol{g}=-g \hat{z}$. Find the heat capacity C_{V}.
[7 points]
(b) Consider a system with a single phase space coordinate ϕ which lives on a circle. Now consider three dynamical systems on this phase space:
(i) $\dot{\phi}=0$
(ii) $\dot{\phi}=1$
(iii) $\dot{\phi}=2-\cos \phi$.

For each of these systems, tell whether it is recurrent, ergodic, both, or neither, and explain your reasoning. [6 points]
(c) Explain Boltzmann's H-theorem.
[6 points]

[^0](d) ν moles of gaseous Argon at an initial temperature T_{A} and volume $V_{\mathrm{A}}=1.0 \mathrm{~L}$ undergo an adiabatic free expansion to an intermediate state of volume $V_{\mathrm{B}}=2.0 \mathrm{~L}$. After coming to equilibrium, this process is followed by a reversible adiabatic expansion to a final state of volume $V_{\mathrm{C}}=3.0 \mathrm{~L}$. Let S_{A} denote the initial entropy of the gas. Find the temperatures $T_{\mathrm{B}, \mathrm{C}}$ and the entropies $S_{\mathrm{B}, \mathrm{C}}$. Then repeat the calculation assuming the first expansion (from A to B) is a reversible adiabatic expansion and the second (from B to C) an adiabatic free expansion. [6 points]
(5) Match the Jonathan Coulton song lines in the left column with their following lines in the right column.
[30 quatloos extra credit]
(a) That was a joke - haha - fat chance
(b) Saw a vision in his head
(c) I try to medicate my concentration haze
(d) I've been patient, I've been gracious
(e) I guess we'll table this for now
(f) She'll eye me suspiciously
(1) I can see the day unfold in front of me
(2) I'm glad to see you take constructive criticism well
(3) And this mountain is covered with wolves
(4) A bulbous pointy form
(5) Hearing the whirr of the servos inside
(6) Anyway this cake is great

[^0]: ${ }^{1}$ In the notes and in class we used the notation $\zeta_{q}(z)$ for the polylogarithm, but for those of you who have yet to master the scribal complexities of the Greek ζ, you can use the notation $\operatorname{Li}_{q}(z)$ instead.

