Physics 2D Lecture Slides Lecture 10

Jan. 25,2010

Radiation from A Blackbody

(a) Intensity of Radiation $\mathbf{I}=\int R(\lambda) d \lambda \propto T^{4}$ $I=\sigma T^{4}$ (Area under curve)
Stephan-Boltzmann Constant $\sigma=5.67 \mathbf{1 0}^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$

Reason for different shape of $R(\lambda)$ Vs λ for different temperature? Can one explain in on basis of Classical Physics (2A,2B,2C) ??

Blackbody Radiator: An Idealization

Blackbody Absorbs everything Reflects nothing

All light entering opening gets absorbed (ultimately) by the cavity wall

Cavity in equilibrium T w.r.t. surrounding. So it radiates everything It absorbs

Emerging radiation is a sample of radiation inside box at temp \mathbf{T}

Predict nature of radiation inside Box ?

Standing Waves

Calculation of Number of Allowed modes/ Unit Volume in a Cavity

Assume cavity is cube of side 2 L . E -field $=0$ at walls $(\mathrm{x}, \mathrm{y}, \mathrm{z}= \pm \mathrm{L})$
Construct wave solutions out of forms $E=E_{0} \exp \left(i k_{x} x+k_{y} y+k_{z} z\right)$
Electromagnetic Wave (Soln. of Maxwell's Equations inside cavity)
Must be of form $E=E_{0} \operatorname{Sin}\left(n_{1} \pi x / L\right) \operatorname{Sin}\left(n_{2} \pi y / L\right) \operatorname{Sin}\left(n_{3} \pi z / L\right)$
i.e. $k_{x}=n_{1} \pi / L$, etc. $\left(n_{1} n_{2} n_{3}=\right.$ integers $\left.>0\right)$
\mathbf{k} points lie on a cubic mesh of spacing (π / L) along $k x, k y, k z$ axes
i.e. one \mathbf{k} point per volume $(\pi / 2 \mathrm{~L})^{3}$

So density of \boldsymbol{k} points is $(2 L / \pi)^{3}$ per unit volume in \mathbf{k}-space

Volume of k space between \mathbf{k} vectors of magnitude k and $k+d k$
is $4 \pi k^{2} \mathrm{dk}$ so no. of allowed \mathbf{k} points in that volume
$=(1 / 8) \times$ Density of k points $\times 4 \pi k^{2} d k=(1 / 8)(2 L / \pi)^{3} 4 \pi k^{2} d k$
Factor of (1/8) is because only positive values of $k_{x} k_{y} k_{z}$ allowed---> positive octant of volume only.

Multiply by 2 for 2 possible polarizations of \mathbf{E} field and remember (2L) ${ }^{3}=\mathrm{V}$ (volume of cavity)
---->No. of allowed modes/unit volume of cavity with k between k and $k+d k$

$$
=n(k) d k=\left(k^{2} / \pi^{2}\right) d k
$$

Now $k=2 \pi / \lambda$ so $d k=-2 \pi / \lambda^{2} d \lambda \cdots-\cdots n(\lambda) d \lambda=\left(8 \pi / \lambda^{4}\right) d \lambda$
and $\lambda=c / f$ so $d \lambda=-c / f^{2} d f \quad--->n(f) d f=\left(8 \pi f^{2} / c^{3}\right) d f$
The above formulae give the no. of modes in k-intervals, wavelength intervals and frequency intervals for EM radiation in a cavity per unit volume of cavity.

EM Energy/unit volume at Temperature T

for wavelengths between λ and $\lambda+d \lambda$ is $u(\lambda, T) d \lambda$
$\mathrm{u}(\lambda, \mathrm{T}) \mathrm{d} \lambda=<\mathrm{E}(\lambda)>\mathrm{n}(\lambda) \mathrm{d} \lambda$
Classical Physics ------> <E $(\lambda)>=k_{B} T$
So get $u(\lambda, T) d \lambda=\left(8 \pi / \lambda^{4}\right) k_{B} T d \lambda$
$R(\lambda)=c / 4 u(\lambda, T)$------> Rayleigh-Jeans Law

The Beginning of The End !

Classical Calculation

\# of standing waves between Wavelengths λ and $\lambda+\mathrm{d} \lambda$ are

$$
\mathrm{N}(\lambda) \mathrm{d} \lambda=\frac{8 \pi \mathrm{~V}}{\lambda^{4}} \cdot d \lambda ; \mathrm{V}=\text { Volume of box }=\mathrm{L}^{3}
$$

Each standing wave contributes energy $\mathrm{E}=\mathrm{kT}$ to radiation in Box
Energy density $u(\lambda)=[\#$ of standing waves/volume $] \times$ Energy/Standing Wave

$$
=\frac{8 \pi \mathrm{~V}}{\lambda^{4}} \times \frac{1}{\mathrm{~V}} \times \mathrm{kT}=\frac{8 \pi}{\lambda^{4}} \mathrm{kT}
$$

$$
\text { Radiancy } \mathrm{R}(\lambda)=\frac{\mathrm{c}}{4} \mathrm{u}(\lambda)=\frac{\mathrm{c}}{4} \frac{8 \pi}{\lambda^{4}} \mathrm{kT}=\frac{2 \pi c}{\lambda^{4}} \mathrm{kT}
$$

Radiancy is Radiation intensity per unit λ interval: Lets plot it

Prediction : as $\lambda \rightarrow 0$ (high frequency) $\Rightarrow R(\lambda) \rightarrow$ Infinity ! Oops!

Ultra Violet (Frequency) Catastrophe

Max Planck \& Birth of Quantum Physics

Back to Blackbody Radiation Discrepancy
Planck noted the UltraViolet Catastrophe at high frequency
"Cooked" calculation with new "ideas" so as bring:

$$
\begin{aligned}
\mathrm{R}(\lambda) \rightarrow 0 \text { as } & \lambda \rightarrow 0 \\
\mathrm{f} & \rightarrow \infty
\end{aligned}
$$

- Cavity radiation as equilibrium exchange of energy between EM radiation \& "atomic" oscillators present on walls of cavity
- Oscillators can have any frequency f
- But the Energy exchange between radiation and oscillator NOT continuous and arbitarary...it is discrete ...in packets of same amount
-

$$
\begin{aligned}
& \mathrm{E}=\mathrm{n} \text { hf, with } \mathrm{n}=1,23 \ldots \infty \\
& \mathrm{~h}=\text { constant he invented, a very small number he made up }
\end{aligned}
$$

Planck's "Charged Oscillators" in a Black Body Cavity Planck did not know about electrons, Nucleus etc:
They were not known

Planck, Quantization of Energy \& BB Radiation

- Keep the rule of counting how many waves fit in a BB Volume
- Radiation Energy in cavity is quantized
- EM standing waves of frequency f have energy

$$
\cdot \mathrm{E}=\mathrm{n} \operatorname{hf}(\mathrm{n}=1,2,3 \ldots 10 \ldots . .1000 \ldots)
$$

- Probability Distribution: At an equilibrium temp T, possible Energy of wave is distributed over a spectrum of states: $P(E)=e^{(-E / k T)}$
- Modes of Oscillation with :
-Less energy $\mathrm{E}=\mathrm{hf}$ = favored
- More energy $\mathrm{E}=\mathrm{hf}=$ disfavored

By this statistics, large energy, high f modes of EM disfavored

Planck

Difference is in calculation of <E>

Consider a mode of frequency f. Planck assumed it was emitted by a set of harmonic oscillators in walls of cavity which could only have energies $\mathrm{E}=\mathrm{nhf}$ ($\mathrm{h}=$ constant now known as Planck's constant).
Probability of oscillator having energy nhf by statistical mechanics
$P(n)=\left(\exp -n h f / k_{B} T\right) /\left\{\sum_{m}\left(\exp -m h f / k_{B} T\right)\right\}$
Sum can be evaluated by writing $\exp \left(-h f / k_{B} T\right)=x$, so it can be written as
$1+x+x^{2}+x^{3}+x^{4}+\ldots \ldots=[1-x]^{-1}$
so $P(n)=\left(\exp -n h f / k_{B} T\right)\left[1-\exp \left(-h f / k_{B} T\right)\right]$
Now E = nhf = Energy of oscillator so average energy

So $<\mathrm{E}(\mathrm{f}, \mathrm{T})>=\left\{\sum_{\mathrm{n}} \mathrm{nhf} \exp -\mathrm{nhf} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right\}\left[1-\exp \left(-\mathrm{hf} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)\right]$
This can be evaluated as $<\mathrm{E}(\mathrm{f}, \mathrm{T})>=\mathrm{hf} /\left[\exp \left(\mathrm{hf} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)-1\right]^{* *}$
yields $u(f, T)=\left(8 \pi f^{3} / c^{3}\right) /\left[\exp \left(h f / k_{B} T\right)-1\right]--->$ Planck's formula

Planck's Explanation of BB Radiation

Major Consequence of Planck's Formula

Disaster \# 2 : Photo-Electric Effect

Light of intensity I, wavelength λ and frequency v incident on a photo-cathode

Measure characteristics of current in the circuit as a fn of I, f, λ

Photo Electric Effect: Measurable Properties

- Rate of electron emission from cathode
- From current i seen in ammeter
- Maximum kinetic energy of emitted electron
- By applying retarding potential on electron moving towards Collector plate

$$
\begin{aligned}
& » \mathrm{~K}_{\mathrm{MAX}}=\mathrm{e} \mathrm{~V}_{\mathrm{S}}\left(\mathrm{~V}_{\mathrm{S}}=\text { Stopping voltage }\right) \\
& \text { »Stopping voltage } \rightarrow \text { no current flows }
\end{aligned}
$$

- Effect of different types of photo-cathode metal
- Time between shining light and first sign of photocurrent in the circuit

Observations : Current Vs Intensity of Incident Light

Photo Electric \& Einstein (Nobel Prize 1915)

Light shining on metal cathode is made of photons Quantum of Energy E $=\mathrm{hf}=\mathrm{KE}+\varphi \quad \Rightarrow \mathrm{KE}=\mathrm{hf}-\varphi$

Stopping Voltage V_{s} Vs Incident Light Frequency

Retarding Potential Vs Light Frequency

Conclusions from the Experimental Observation

- Max Kinetic energy $\mathrm{K}_{\mathrm{MAX}}$ independent of Intensity I for light of same frequency
- No photoelectric effect occurs if light frequency f is below a threshold no matter how high the intensity of light
- For a particular metal, light with $\mathrm{f}>\mathrm{f}_{0}$ causes photoelectric effect IRRESPECTIVE of light intensity.
- f_{0} is characteristic of that metal
- Photoelectric effect is instantaneous !...not time delay

Can one Explain all this Classically !

Classical Explanation of Photo Electric Effect

- As light Intensity increased $\Rightarrow \vec{E}$ field amplitude larger
- E field and electrical force seen by the "charged subatomic oscillators" Larger
- $\vec{F}=e \vec{E}$
- More force acting on the subatomic charged oscillator
- \Rightarrow More energy transferred to it
- \Rightarrow Charged particle "hooked to the atom" should leave the surface with more Kinetic Energy KE !! The intensity of light shining rules !
- As long as light is intense enough , light of ANY frequency f should cause photoelectric effect
- Because the Energy in a Wave is uniformly distributed over the Spherical wavefront incident on cathode, should be a noticeable time lag $\Delta \mathrm{T}$ between time it is incident \& the time a photo-electron is ejected : Energy absorption time
- How much time ? Lets calculate it classically.

Classical Physics: Time Lag in Photo-Electric Effect

- Electron absorbs energy incident on a surface area where the electron is confined \cong size of atom in cathode metal
- Electron is "bound" by attractive Coulomb force in the atom, so it must absorb a minimum amount of radiation before its stripped off
- Example : Laser light Intensity $\mathrm{I}=120 \mathrm{~W} / \mathrm{m}^{2}$ on Na metal
- Binding energy $=2.3 \mathrm{eV}=$ "Work Function"
- Electron confined in Na atom, size $\cong 0.1 \mathrm{~nm}$..how long before ejection?
- Average Power Delivered $\mathrm{P}_{\mathrm{AV}}=\mathrm{I} . \mathrm{A}, \mathrm{A}=\pi \mathrm{r}^{2} \cong 3.1 \times 10^{-20} \mathrm{~m}^{2}$
- If all energy absorbed then $\Delta E=P_{A V} \cdot \Delta T \Rightarrow \Delta T=\Delta E / P_{A V}$

$$
\Delta T=\frac{(2.3 \mathrm{eV})\left(1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)}{\left(120 \mathrm{~W} / \mathrm{m}^{2}\right)\left(3.1 \times 10^{-20} \mathrm{~m}^{2}\right)}=0.10 \mathrm{~S}
$$

- Classical Physics predicts Measurable delay even by the primitive clocks of 1900
- But in experiment, the effect was observed to be instantaneous !!
- Classical Physics fails in explaining all results \& goes to DOGHOUSE!

Einstein's Explanation of Photoelectric Effect

- Energy associated with EM waves in not uniformly distributed over wave-front, rather is contained in packets of "stuff" \Rightarrow PHOTON
- $\mathrm{E}=\mathrm{hf}=\mathrm{hc} / \lambda$ [but is it the same h as in Planck's th.?]
- Light shining on metal emitter/cathode is a stream of photons of energy which depends on frequency f
- Photons knock off electron from metal instantaneously
- Transfer all energy to electron
- Energy gets used up to pay for Work Function Φ (Binding Energy)
- Rest of the energy shows up as KE of electron $\mathrm{KE}=\mathrm{hf}-\Phi$
- Cutoff Frequency hf ${ }_{0}=\Phi$ (pops an electron, $\mathrm{KE}=0$)
- Larger intensity I \rightarrow more photons incident
- Low frequency light $\mathrm{f} \rightarrow$ not energetic enough to overcome work function of electron in atom

