

Physics 2D Lecture Slides Lecture 10

Jan.25, 2010

Radiation from A Blackbody

(a) Intensity of Radiation $I = \int R(\lambda) d\lambda \propto T^4$ $I = \sigma T^4$ (Area under curve)

Stephan-Boltzmann Constant σ = 5.67 10⁻⁸ W / m² K⁴

Reason for different shape of R(λ) Vs λ for different temperature? Can one explain in on basis of Classical Physics (2A,2B,2C) ??

Blackbody Radiator: An Idealization

Classical Analysis:

- Box is filled with EM standing waves
- Radiation reflected back-and-forth between walls
- Radiation in thermal equilibrium with walls of Box
- How may waves of wavelength λ can fit inside the box ?

Blackbody Absorbs everything Reflects nothing All light entering opening gets absorbed (ultimately) by the cavity wall

Cavity in equilibrium T w.r.t. surrounding. So it radiates everything It absorbs

Emerging radiation is a sample of radiation inside box at temp T

Predict nature of radiation inside Box ?

Standing Waves

Calculation of Number of Allowed modes/ Unit Volume in a Cavity

Assume cavity is cube of side 2L. **E**-field = 0 at walls $(x,y,z = \pm L)$ Construct wave solutions out of forms **E** = **E**₀ exp(ik_xx + k_yy + k_zz) Electromagnetic Wave (Soln. of Maxwell's Equations inside cavity) Must be of form **E** = **E**₀ Sin(n₁πx/L) Sin(n₂πy/L) Sin(n₃πz/L)

i.e. $k_x = n_1 \pi/L$, etc. $(n_1 n_2 n_3 = integers > 0)$

k points lie on a cubic mesh of spacing (π /L) along kx, ky, kz axes

i.e. one **k** point per volume $(\pi/2L)^3$

So density of **k** points is $(2L/\pi)^3$ per unit volume in **k**-space

Volume of k space between **k** vectors of magnitude k and k + dk

is $4\pi k^2 dk$ so no. of allowed **k** points in that volume

= (1/8) x Density of **k** points x $4\pi k^2 dk = (1/8) (2L/\pi)^3 4\pi k^2 dk$

Factor of (1/8) is because only positive values of $k_x k_y k_z$ allowed--> positive octant of volume only.

Multiply by 2 for 2 possible polarizations of **E** field and remember $(2L)^3 = V$ (volume of cavity)

---->No. of allowed modes/unit volume of cavity with k between k and k + dk

 $= n(k)dk = (k^2/\pi^2)dk$

Now $k = 2\pi/\lambda$ so $dk = -2\pi/\lambda^2 d\lambda - n(\lambda)d\lambda = (8\pi/\lambda^4)d\lambda$

and $\lambda = c/f$ so $d\lambda = -c/f^2 df$ ----> n(f) df = (8 $\pi f^2/c^3$) df

The above formulae give the no. of modes in k-intervals, wavelength intervals and frequency intervals for EM radiation in a cavity per unit volume of cavity.

EM Energy/unit volume at Temperature T

for wavelengths between λ and λ +d λ is u(λ ,T) d λ

 $u(\lambda,T)d\lambda = \langle E(\lambda) \rangle n(\lambda)d\lambda$

Classical Physics -----> <E(λ)> = k_BT

So get u(λ ,T) d λ = (8 π / λ ⁴) k_BT d λ

 $R(\lambda) = c/4 u (\lambda,T) ----> Rayleigh-Jeans Law$

The Beginning of The End !

Classical Calculation

of standing waves between Wavelengths λ and λ +d λ are

N(
$$\lambda$$
)d $\lambda = \frac{8\pi V}{\lambda^4} \bullet d\lambda$; V = Volume of box = L³

Each standing wave contributes energy E = kT to radiation in Box

Energy density $u(\lambda) = [\# \text{ of standing waves/volume}] \times \text{ Energy/Standing Wave}$

$$= \frac{8\pi V}{\lambda^4} \times \frac{1}{V} \times kT = \frac{8\pi}{\lambda^4} kT$$

Radiancy
$$R(\lambda) = \frac{c}{4}u(\lambda) = \frac{c}{4}\frac{8\pi}{\lambda^4} kT = \frac{2\pi c}{\lambda^4} kT$$

Radiancy is Radiation intensity per unit λ interval: Lets plot it

Prediction : as $\lambda \rightarrow 0$ (high frequency) $\Rightarrow R(\lambda) \rightarrow Infinity !$ Oops !

Ultra Violet (Frequency) Catastrophe

Max Planck & Birth of Quantum Physics

Back to Blackbody Radiation Discrepancy Planck noted the UltraViolet Catastrophe at high frequency "Cooked" calculation with new "ideas" so as bring: $R(\lambda) \rightarrow 0$ as $\lambda \rightarrow 0$ $f \rightarrow \infty$

- Cavity radiation as equilibrium exchange of energy between EM radiation & "atomic" oscillators present on walls of cavity
- Oscillators can have any frequency f
- But the Energy exchange between radiation and oscillator NOT continuous and arbitarary...it is discrete ...in packets of same amount

•
$$E = n hf$$
, with $n = 1, 2, 3..., \infty$

h = constant he invented, a very small number he made up

Planck's "Charged Oscillators" in a Black Body Cavity Planck did not know about electrons, Nucleus etc:

They were not known

Planck, Quantization of Energy & BB Radiation

- Keep the rule of counting how many waves fit in a BB Volume
- Radiation Energy in cavity is quantized
- EM standing waves of frequency f have energy
 E = n hf (n = 1,2,3 ...101000...)
- Probability Distribution: At an equilibrium temp T, possible Energy of wave is distributed over a spectrum of states: P(E) = e^(-E/kT)
- Modes of Oscillation with :
 - •Less energy E=hf = favored

•More energy E=hf = disfavored

hf

By this statistics, large energy, high f modes of EM disfavored

<u>Planck</u>

Difference is in calculation of <E>

Consider a mode of frequency f. Planck assumed it was emitted by a set of harmonic oscillators in walls of cavity which could only have energies E =nhf (h= constant now known as Planck's constant). Probability of oscillator having energy nhf by statistical mechanics

$$P(n) = (exp - nhf/k_BT) / \{ \sum_{m} (exp - mhf/k_BT) \}$$

Sum can be evaluated by writing $exp(-hf/k_BT) = x$, so it can be written as

$$1 + x + x^2 + x^3 + x^4 + \dots = [1 - x]^{-1}$$

so $P(n) = (exp - nhf/k_BT)[1 - exp(-hf/k_BT)]$

Now E = nhf = Energy of oscillator so average energy

So $\langle E(f,T) \rangle = \{\sum_{n} nhf exp - nhf/k_BT\} [1 - exp(-hf/k_BT)]$

This can be evaluated as $\langle E(f,T) \rangle = hf / [exp(hf/k_BT) - 1]^{**}$

yields u(f, T) = $(8\pi f^3/c^3)/[\exp(hf/k_BT) - 1]$ ---> Planck's formula

Planck's Explanation of BB Radiation

Major Consequence of Planck's Formula

Disaster # 2 : Photo-Electric Effect

Light of intensity I, wavelength λ and frequency ν incident on a photo-cathode

Measure characteristics of current in the circuit as a fn of I, f, λ

Photo Electric Effect: Measurable Properties

- Rate of electron emission from cathode
 - From current *i* seen in ammeter
- Maximum kinetic energy of emitted electron
 - By applying retarding potential on electron moving towards Collector plate

» $K_{MAX} = eV_S$ ($V_S = Stopping voltage$) » Stopping voltage \rightarrow no current flows

- Effect of different types of photo-cathode metal
- Time between shining light and first sign of photocurrent in the circuit

Observations : Current Vs Intensity of Incident Light

Photo Electric & Einstein (Nobel Prize 1915)

Light shining on metal cathode is made of photons Quantum of Energy E = hf = $KE + \phi \implies KE = hf - \phi$

Stopping Voltage V_s Vs Incident Light Frequency

Retarding Potential Vs Light Frequency

Conclusions from the Experimental Observation

- Max Kinetic energy K_{MAX} independent of Intensity I for light of same frequency
- No photoelectric effect occurs if light frequency f is below a threshold no matter how high the intensity of light
- For a particular metal, light with f > f₀ causes photoelectric effect IRRESPECTIVE of light intensity.
 – f₀ is characteristic of that metal
- Photoelectric effect is instantaneous !...not time delay

Can one Explain all this Classically !

Classical Explanation of Photo Electric Effect

- As light Intensity increased $\Rightarrow \vec{E}$ field amplitude larger
 - E field and electrical force seen by the "charged subatomic oscillators" Larger

• $\vec{F} = e\vec{E}$

- More force acting on the subatomic charged oscillator
- \Rightarrow More energy transferred to it
- ⇒ Charged particle "hooked to the atom" should leave the surface with more Kinetic Energy KE !! The intensity of light shining rules !
- As long as light is <u>intense enough</u>, light of ANY frequency f should cause photoelectric effect
- Because the Energy in a Wave is uniformly distributed over the Spherical wavefront incident on cathode, should be a noticeable time lag ΔT between time it is incident & the time a photo-electron is ejected : Energy absorption time
 - How much time ? Lets calculate it classically.

Classical Physics: Time Lag in Photo-Electric Effect

- Electron absorbs energy incident on a surface area where the electron is confined ≅ size of atom in cathode metal
- Electron is "bound" by attractive Coulomb force in the atom, so it must absorb a minimum amount of radiation before its stripped off
- Example : Laser light Intensity $I = 120W/m^2$ on Na metal
 - Binding energy = 2.3 eV= "Work Function"
 - Electron confined in Na atom, size $\cong 0.1$ nm ...how long before ejection ?
 - Average Power Delivered P_{AV} = I . A, $A = \pi r^2 \cong 3.1 \times 10^{-20} \text{ m}^2$
 - If all energy absorbed then $\Delta E = P_{AV} \cdot \Delta T \implies \Delta T = \Delta E / P_{AV}$

$$\Delta T = \frac{(2.3eV)(1.6 \times 10^{-19} J / eV)}{(120W / m^2)(3.1 \times 10^{-20} m^2)} = 0.10 S$$

- Classical Physics predicts Measurable delay even by the primitive clocks of 1900
- But in experiment, the effect was observed to be instantaneous !!
- Classical Physics fails in explaining all results & goes to DOGHOUSE !

Einstein's Explanation of Photoelectric Effect

- Energy associated with EM waves in not uniformly distributed over wave-front, rather is contained in packets of "stuff" ⇒ PHOTON
- E= hf = hc/ λ [but is it the same h as in Planck's th.?]
- Light shining on metal emitter/cathode is a stream of photons of energy which depends on frequency f
- Photons knock off electron from metal instantaneously
 - Transfer all energy to electron
 - Energy gets used up to pay for Work Function Φ (Binding Energy)
 - Rest of the energy shows up as KE of electron KE = hf- Φ
- Cutoff Frequency $hf_0 = \Phi$ (pops an electron, KE = 0)
- Larger intensity I \rightarrow more photons incident
- Low frequency light f → not energetic enough to overcome work function of electron in atom