Physics 2D Lecture Slides Lecture 2

Jan. 5, 2010

Lecture 1: Relativity

- Describing a Physical Phenomenon
- Event (s)
- Observer (s)

Described on Black board

- Frame(s) of reference (the point of View!)
- Inertial Frame of Reference
- Accelerated Frame of Reference
- Newtonian Relativity and Inertial Frames
- Laws of Mechanics and Frames of Reference
- Galilean Transformation of coordinates
- Addition law for velocities
- Maxwell's Equations \& Light
- Light as Electromagnetic wave
- Speed of Light is not infinite !
- Light needs no medium to propagate

The Universe as a Clockwork of Reference Frames

Event, Observer, Frame of Reference

- Event : Something happened $=>(x, y, z, t)$
- Same event can be described by different observers
- Observer(s) : Measures event with a meter stick \& a clock
- Frame of Reference :observer is standing on it
- Inertial Frame of reference \leftarrow constant velocity, no force
- An event is not OWNED by an observer or frame of reference
- An event is something that happens, any observer in any reference frame can assign some ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$) to it
- Different observers assign different space \& time coordinates to same event
- S describes it with : (x, y, z, t)
- S' describes same thing with ($\left.x^{\prime}, y^{\prime}, x^{\prime}, t^{\prime}\right)$

Figure 39.2 An event occurs at a point P. The event is seen by two observers in inertial frames S and S^{\prime}, where S^{\prime} moves with a velocity \mathbf{v} relative to S .

"Imagining" Ref Frames And Observers

Galilean Transformation of Coordinates

Figure 39.2 An event occurs at a point P. The event is seen by two observers in inertial frames S and S^{\prime}, where S^{\prime} moves with a velocity \mathbf{v} relative to S .

Galilean Rules of Transformation

$$
\begin{aligned}
& x^{\prime}=x-v t \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=t
\end{aligned}
$$

Quote from Issac Newton Regarding Time

Absolute, true and mathematical time, of itself, and from nature, flows equably without relation to anything external

$$
t=t^{\prime}
$$

There is a universal clock
Or

All clocks are universal

Galilean Addition Law For Velocities

$$
d x^{\prime}=d x-v d t \text {. }
$$

This rule is used in our everyday observations (e.g. driving a car) and is consistent with our INTUITIVE notions of space and time

But what happens when I drive a car very fast !!

How fast: ($v=$?)

- As fast as light can travel in a medium !!!

Newton's Laws and Galilean Transformation!

- But Newton's Laws of Mechanics remain the same in All frames of references!

$$
\frac{d^{2} x^{\prime}}{d t^{2}}=\frac{d^{2} x^{\prime}}{d t^{2}}-\frac{d v}{d t}
$$

$$
a^{\prime}=a \quad \Rightarrow \vec{F}^{\prime}=\vec{F}
$$

Description of Force does not change from one inertial frame of reference to another

Newtonian/Galliean Relativity

Inertial Frame of Reference is a system in which a free body is not accelerating
Laws of Mechanics must be the same in all Inertial Frames of References \Rightarrow Newton's laws are valid in all Inertial frames of references
\Rightarrow No Experiment involving laws of mechanics can differentiate between any two inertial frames of reference
\Rightarrow Only the relative motion of one frame of ref. w.r.t other can be detected
\Rightarrow Notion of ABSOLUTE motion thru space is meaningless
\Rightarrow There is no such thing as a preferred frame of reference

Figure 39.1 (a) The observer in the truck sees the ball move in a vertical path when thrown upward. (b) The Earth observer sees the path of the ball as a parabola.

Measuring The Speed Of Light

High Technology of 1880's: Fizeau's measurement of speed of light

1. Shoot pulses of light to mirror
2. Light should take $t=2 \mathrm{~L} / \mathrm{c}$ to get back to Observer
3. Adjust the angular velocity of wheel such that reflected light from mirror makes it back to observer thru the next gap

Newtonian Relativity \& Light !

Light source, mirror \& observer moving thru some medium with velocity V Galilean Relativity \rightarrow

- If the alien measures velocity of light = c
-Then observer must measure speed of light = c-v when it is leaving him $=c+\mathrm{v}$ when it is reflected back

But Maxwell's Eq \rightarrow speed of light is constant in a medium??

Must it be that laws of Mechanics behave differently from E\&M in different inertial frames of references ? ...if so how inelegant would nature be!

Does Light Need a Medium to Propagate?

- EM waves are a different
- What is the required medium of propagation ? Aether ??
- How to verify whether Aether exists or not?
- (Always) Do an Experiment!
- The Michelson-Morley Interferometer
- Interferometer: device used to measure
- Lengths or changes in lengths
- Measured with great accuracy
- Using interference fringes
- HW Reading : Section 1.3
- If you don't understand this, pl. review
- Wave Phenomena
- Bottomline: Light needs no medium

Light Is An Electromagnetic Wave (2C)

- Maxwell's Equations:

$$
\oint_{S} \mathbf{B} \cdot d \mathbf{A}=0
$$

$$
\oint \mathbf{E} \cdot d \mathbf{s}=-\frac{d \Phi_{B}}{d t}
$$

$$
\oint \mathbf{B} \cdot d \mathbf{s}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}
$$

$$
\frac{\partial^{2} E}{\partial x^{2}}=\mu_{0} \epsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}
$$

$$
\frac{\partial^{2} B}{\partial x^{2}}=\mu_{0} \epsilon_{0} \frac{\partial^{2} B}{\partial t^{2}}
$$

$$
\begin{aligned}
E & =E_{\max } \cos (k x-\omega t) \\
B & =B_{\max } \cos (k x-\omega t)
\end{aligned}
$$

Galilean Relativity and EM Waves

It would appear to Observer O in S frame that velocity of light

$$
V_{S}=c+v>c
$$

This contradicts Maxwell's theory of Light !
Are Newton's Laws and Maxwell's laws inconsistent??!!

Einstein's Special Theory of Relativity

ALBERT EINSTEIN

Einstein's Postulates of SR

- The laws of physics must be the same in all inertial reference frames
- The speed of light in vacuum has the same value ($c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$), in all inertial frames, regardless of the velocity of the observer or the velocity of the source emitting the light.

Consequences of Special Relativity: Simultaneity not Absolute

Simultaneity: When two events occur at same time, held absolute for Classical Phys Lightning bolts

Events that are simultaneous for one Observer are not simultaneous for another Observer in relative motion Simultaneity is not absolute !!
Time interval depends on the Reference frame it is measured in

A Simple Clock Measuring a Time Interval

Photosensitive surface
One hour $=60 \times 1$ minute time intervals

Time Dilation and Proper Time

Watching a time interval (between 2 events) with a simple clock

Observer $\mathrm{O}^{\prime}: \Delta \mathrm{t}^{\prime}=\frac{2 d}{c}$

Observer O : Apply Pythogoras Theorem

$$
\begin{aligned}
& \quad\left(\frac{c \Delta t}{2}\right)^{2}=(d)^{2}+\left(\frac{v \Delta t}{2}\right)^{2}, \text { but } d=\left(\frac{c \Delta t^{\prime}}{2}\right) \\
& \therefore \quad c^{2}(\Delta t)^{2}=c^{2}\left(\Delta t^{\prime}\right)^{2}+v^{2}(\Delta t)^{2} \\
& \therefore \quad \Delta t=\frac{\Delta t^{\prime}}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}=\gamma \Delta t^{\prime}, \Delta t>\Delta t^{\prime}
\end{aligned}
$$

Measuring Time: Period of a Pendulum

- Period of a pendulum is 3.0 s in the rest frame of the pendulum
- What is period of the pendulum as seen by an observer moving at $\mathrm{v}=0.95 \mathrm{c}$

Answer:

- Proper time T' = 3.0s

- Since motion is relative and time dilation does not distinguish between
- relative motion $\rightarrow \rightarrow$ (V) from relative motion $\leftarrow \leftarrow(-\mathrm{V})$
- lets reformulate the problem like this (??)
- A pendulum in a rocket is flying with velocity $\mathrm{V}=0.95 \mathrm{c}$ past a stationary observer \bullet Moving clocks runs slower [w.r.t clock in observer's hand (rest)] by factor γ
\rightarrow Period T measured by observer $=\gamma$ T'

$$
\begin{aligned}
& \gamma=\frac{1}{\sqrt{1-(v / c)^{2}}}=\frac{1}{\sqrt{1-(0.95)^{2}}}=3.2 \\
& \Rightarrow T=\gamma T^{\prime}=3.2 \times 3.0 s=9.6 s
\end{aligned}
$$

Moving pendulum slows down \rightarrow takes longer to complete a period

All Measures of Time Slow down from a Moving Observer's Perspective !

- Your heartbeat or your pulse rate

Round The World With An Atomic Clock !

- Atomic Clock : certain atomic level transitions in Cesium atom
- Two planes take off from DC, travel east and west
- Eastward trip took 41.2 hrs
- Westward trip took 48.6
- Atomic clocks compared to similar ones kept in DC
- Need to account for Earth's rotation + GR etc

Travel	Predicted	Measured
Eastward	$-40 \pm 23 \mathrm{~ns}$	$-59 \pm 10 \mathrm{~ns}$
Westward	$275 \pm 21 \mathrm{~ns}$	$273 \pm 7 \mathrm{~ns}$

Flying clock ticked faster or slower than reference clock. Slow or fast is due to Earth's rotation

Cosmic Particles Are Bombarding the Earth

- Cosmic "rays" are messengers from space
- Produced in violent collisions in the cosmos
- Typical Kinetic energy ~ $\mathbf{1 0 0} \mathbf{~ G e V}$
- Smash into Earth's outer atmosphere
- 4700 m from sea level
- Sometimes produce short lived Muons
- Muon is electron like charged particle
- ~ 200 times heavier , same charge
- Lifetime $\tau=2.2 \mu \mathrm{~s}=2.2 \times 10^{-6} \mathrm{~s}$
- Produced with speed v $\equiv \mathbf{c}$
- Distance traveled in its lifetime

$$
d=c \tau=650 m
$$

- Yet they seem to reach the surface!!
- Why => Time Dilation
- Must pay attention to frames of references involved

Cosmic Rays Are Falling On Earth : Example of Time Dilation

(a)

- Consider Two frames of references
- Muon Rider has "Proper Time"
- Time measured by observer moving along with clock
$-\Delta \mathrm{t}^{\prime}=\tau=2.2 \mu \mathrm{~S}$
$-D^{\prime}=v \Delta t^{\prime}=650 \mathrm{~m}$
- Earthling watches a moving clock (muon's) run slower
$-\Delta \mathrm{t}^{\prime}=\gamma \tau$
$-\mathrm{v}=0.99 \mathrm{c},=>\gamma=7.1$
$-D=v \Delta t=4700 m$

Muon Decay Distance Distribution

Relative to Observer on Earth Muons have a lifetime

$$
t=\gamma \tau=7.1 \tau
$$

Exponential Decay time Distribution : As in Radioactivity

Pop Quiz !

- What happens when I reverse the clocks being watched ?
- Sally now watches Sam's clock
- Sally is moving w.r.t. Sam's clock. Sam is at rest w.r.t the clock.
- What does she make of time intervals as measured by his clock?

After coincidence of their origins at $t=0, t^{\prime}=0$
Sam and Sally agree to send light signals to each other after time t on their respective clocks. Let $t_{1}=$ time on Sam's clock at which he would receive signal if clocks ran at same time and t_{2} be actual time he received it.
Then,

$$
\begin{aligned}
& t_{1}=t(1+v / c) \\
& t_{2}=\gamma t(1+v / c)=t \sqrt{\frac{1+v / c}{1-v / c}}
\end{aligned}
$$

Let $\mathrm{t}^{\prime}{ }_{1}=$ time on Sally's clock at which she would receive signal if clocks ran at same time and $\mathrm{t}_{2}{ }_{2}$ be actual time she received it. According to Sam she should get it at $\left(t+t_{0}\right)$ where

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{t}}=\mathrm{vt}+\mathrm{vt}_{0} \quad \text { or } \\
& \mathrm{t}_{0}=[\mathrm{v} /(\mathrm{c}-\mathrm{v})] \mathrm{t} \quad \text { so } \\
& \mathrm{t}_{1}^{\prime}=\mathrm{t}[1+\mathrm{v} /(\mathrm{c}-\mathrm{v})]=\mathrm{t} /(1-\mathrm{v} / \mathrm{c}) \\
& \text { But Sally's clock shows } \mathrm{t}^{\prime}{ }_{2}=\mathrm{t}^{\prime}{ }_{1} / \gamma=\mathrm{t} \sqrt{\frac{1+v / c}{1-v / c}}
\end{aligned}
$$

So each of them sees the others clock slow down!

Jack and Jill's Excellent Adventure: Twin Paradox

Jack \& Jill are 20 yr old twins, with same heartbeat Jack takes off with V = 0.8c $=(4 / 5) \mathrm{c}$ to a star 20 light years Away.

Jill stays behind, watches Jack by telescope. They Eventually compare notes

Only 30 years have gone by Jack's calendar SO Jack is 50 years old but Jill is 70 !

Twin Paradox?

- Paradox : Turn argument around, motion is relative. Look at Jack's point of view !
- Jack claims he at rest, Jill is moving $\mathrm{v}=0.8 \mathrm{c}$

- Should not Jill be 50 years old when 70 year old Jack returns from space Odyssey?

> No! ...because Jack is not always
> traveling in a inertial frame of reference TO GET BACK TO EARTH HE HAS TO TURN AROUND => decelerate/accelerate
> But Jill always remained in Inertial frame Time dilation formula valid for Jill's observation of Jack but not to Jack's observation of Jill !!....remember this always

Non-symmetric aging verified with atomic clocks taken on airplane trip around world and compared with identical clock left behind. Observer who departs from an inertial system will always find its clock slow compared with clocks that stayed in the system

Offsetting Penalty : Length Contraction

Star A

$$
L^{\prime}=\Delta t^{\prime} . V
$$

Star B

Δt

Rocketman Vs The Earthling

- Earth Observer saw rocketman take time $\Delta \mathrm{t}=(\mathrm{L} / \mathrm{V})$
- Rocketman says he is at rest, Star B moving towards him with speed V from right passed him by in time $\Delta \mathrm{t}^{\prime}$, so
- $\mathrm{L}^{\prime}=\Delta \mathrm{t}^{\prime}$. V
- But $\Delta \mathrm{t}^{\prime}=\Delta \mathrm{t} / \gamma$ (time dilation)
- $\quad=\mathrm{L}^{\prime}=\mathrm{V} \Delta \mathrm{t} / \gamma$
$=\mathrm{L} / \gamma$

$$
\begin{aligned}
& \mathrm{L}^{\prime}=\mathrm{L} \cdot \sqrt{1-\frac{\mathrm{V}^{2}}{\mathrm{c}^{2}}} \\
& \mathrm{~L}^{\prime} \leq \mathrm{L}
\end{aligned}
$$

Moving Rods Contract in direction Of relative motion

Immediate Consequences of Einstein's Postulates: Recap

- Events that are simultaneous for one Observer are not simultaneous for another Observer in relative motion
- Time Dilation : Clocks in motion relative to an Observer appear to slow down by factor γ
- Length Contraction : Lengths of Objects in motion appear to be contracted in the direction of motion by factor γ^{-1}
- New Definitions :
- Proper Time (who measures this ?)
- Proper Length (who measures this ?)
- Different clocks for different folks !

