Physics 2D Lecture Slides Lecture 1

Jan. 4, 2010

Modern Physics (PHYS 2D)

- Exploration of physical ideas and phenomena related to
- High velocities and acceleration (Einstein's Theory of Relativity)
- Sub Atomic structure and Dynamics (Quantum Physics)
- The very small (quarks) and the Very large (cosmos)
- A glimpse of the cutting edge of thought in Physics and technology that it is generating
- A different kind of course :
- Exciting (Gee Whiz stuff) BUT intense
- About 40 Nobel Prize winning ideas/experiment in course (~4 / week!)
- Non-intuitive (how do you figure how electrons act inside an atom)
- Will require abstract thought
- Fountainhead of Chemistry, Biology, Electronics, Computing
- Foundation for tomorrow's technoloav. chemistrv and medicine

Quizzes, Final and Grades

- Course score $=60 \%$ Quiz $+40 \%$ Final Exam
- 9 quizzes (every Friday starting Jan. 8), best 7 scores count
- Two problems in each quiz, 50 minutes to do it
- One problem HW like, other more interesting
- Closed book exam, some formulae will be provided
- No "CHEAT SHEETS" please
- Blue Book required, Code numbers will be given at the 1st quiz. Bring calculator, check battery !
- No makeup quizzes / See handout for Quiz regrade protocol
- Final Exam : March $15^{\text {th }}$, 11:30am - 2.30 pm
- Inform me of possible conflict within 2 weeks of course
- Don't plan travel/vacation before finals schedule is confirmed!
- No makeup finals for any reason

What to Expect / Not Expect on the Quiz / Final Handout

Some Useful Numbers, Equations and Identities
Speed of Light, $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$

$$
\begin{gathered}
\gamma=\frac{1}{\sqrt{1-\mathrm{v}^{2} / \mathrm{c}^{2}}} \\
\mathrm{x}^{\prime}=\gamma(\mathrm{x}-\mathrm{vt}) \\
\mathrm{t}^{\prime}=\gamma\left(\mathrm{t}-\frac{\mathrm{xv}}{\mathrm{c}^{2}}\right) \\
\mathrm{V}_{\mathrm{x}}^{\prime}=\frac{\mathrm{V}_{\mathrm{x}}-\mathrm{v}}{1-\frac{\mathrm{V}_{\mathrm{x}}}{\mathrm{c}^{2}}} \\
\mathrm{p}=\frac{\mathrm{mV}_{\mathrm{x}}}{\sqrt{1-\mathrm{V}_{\mathrm{x}}^{2} / \mathrm{c}^{2}}} \\
\mathrm{E}=\frac{\mathrm{mc}^{2}}{\sqrt{1-\mathrm{V}_{\mathrm{x}}^{2} / \mathrm{c}^{2}}}=\mathrm{K}+\mathrm{mc}^{2} \\
\nu_{\mathrm{obs}}=\frac{\sqrt{1+\mathrm{v} / \mathrm{c}}}{\sqrt{1-\mathrm{v} / \mathrm{c}}} \nu_{\text {source }}
\end{gathered}
$$

Course Grade

- Our wish is that every body gets an A! So no curve
- Grading on an absolute scale. Roughly it looks like this :

Total Score	Grade
>85	$\mathrm{~A}+$
>70	A
>50	B
>35	C
<25	F

- Hint : don't miss the early quizzes, they are easier

Expected Prior Knowledge: Brush up!

- Concepts learnt in Phys 2A, 2B and 2C will be used in 2D
- Familiarity with Vector Calculus \& Differential Equations
- Knowledge of PHYSICS 2C material
- Will need to know concepts in Waves : Interference \& Diffraction
- Hard to appreciate ideas in Modern Physics without them
- Notes on 2C concepts needed will be posted on class web site
- Consult TA or me if you need extra help
- We can help you over weekends but pl. contact us early!!

How To Do Well In This Course

- Don't rely on your intuition! Always think thru the concept
- Read the assigned text BEFORE lecture to get a feel of the topic
- Attend lecture (ask questions during/before/after lecture) and discussion.

Review lecture \& discussion material using video-on-demand

- Attempt all homework problems yourself
- Before looking at the problem solutions (available on web every Tuesday afternoon)
- Before attending Problem Solving session
- Work in sets of 2-3 to share ideas and problem solving approaches
- Do not try to memorize complicated formulae or Homework problems! Do not just accept a concept without understanding the logic
- Quarter goes fast, don't leave every thing for the week before exam !!
- All-nighters don't work in this course: Get decent sleep before Quiz or Finals
- Don't hesitate to show up at Prof. or TA office hour (they don't bite!)

Lecture 1: Relativity

- Describing a Physical Phenomenon
- Event (s)
- Observer (s)

Described on Black board

- Frame(s) of reference (the point of View!)
- Inertial Frame of Reference
- Accelerated Frame of Reference
- Newtonian Relativity and Inertial Frames
- Laws of Mechanics and Frames of Reference
- Galilean Transformation of coordinates
- Addition law for velocities
- Maxwell's Equations \& Light
- Light as Electromagnetic wave
- Speed of Light is not infinite !
- Light needs no medium to propagate

Event, Observer, Frame of Reference

- Event : Something happened $=>(x, y, z, t)$
- Same event can be described by different observers
- Observer(s) : Measures event with a meter stick \& a clock
- Frame of Reference :observer is standing on it
- Inertial Frame of reference \leftarrow constant velocity, no force
- An event is not OWNED by an observer or frame of reference
- An event is something that happens, any observer in any reference frame can assign some ($\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$) to it
- Different observers assign different space \& time coordinates to same event
- S describes it with : (x, y, z, t)
- S' describes same thing with ($\left.x^{\prime}, y^{\prime}, x^{\prime}, t^{\prime}\right)$

Figure 39.2 An event occurs at a point P. The event is seen by two observers in inertial frames S and S^{\prime}, where S^{\prime} moves with a velocity \mathbf{v} relative to S .

The Universe as a Clockwork of Reference Frames

"Imagining" Ref Frames And Observers

Newtonian/Galliean Relativity

Inertial Frame of Reference is a system in which a free body is not accelerating
Laws of Mechanics must be the same in all Inertial Frames of References \Rightarrow Newton's laws are valid in all Inertial frames of references
\Rightarrow No Experiment involving laws of mechanics can differentiate between any two inertial frames of reference
\Rightarrow Only the relative motion of one frame of ref. w.r.t other can be detected
\Rightarrow Notion of ABSOLUTE motion thru space is meaningless
\Rightarrow There is no such thing as a preferred frame of reference

Figure 39.1 (a) The observer in the truck sees the ball move in a vertical path when thrown upward. (b) The Earth observer sees the path of the ball as a parabola.

Galilean Transformation of Coordinates

Figure 39.2 An event occurs at a point P. The event is seen by two observers in inertial frames S and S^{\prime}, where S^{\prime} moves with a velocity \mathbf{v} relative to S .

Galilean Rules of Transformation

$$
\begin{aligned}
& x^{\prime}=x-v t \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=t
\end{aligned}
$$

Quote from Issac Newton Regarding Time

Absolute, true and mathematical time, of itself, and from nature, flows equably without relation to anything external

$$
t=t^{\prime}
$$

There is a universal clock
Or

All clocks are universal

Galilean Addition Law For Velocities

$$
d x^{\prime}=d x-v d t \text {. }
$$

This rule is used in our everyday observations (e.g. driving a car) and is consistent with our INTUITIVE notions of space and time

But what happens when I drive a car very fast !!

How fast: ($v=$?)

- As fast as light can travel in a medium !!!

Light Is An Electromagnetic Wave (2C)

- Maxwell's Equations:

$$
\oint_{S} \mathbf{B} \cdot d \mathbf{A}=0
$$

$$
\oint \mathbf{E} \cdot d \mathbf{s}=-\frac{d \Phi_{B}}{d t}
$$

$$
\oint \mathbf{B} \cdot d \mathbf{s}=\mu_{0} I+\mu_{0} \epsilon_{0} \frac{d \Phi_{E}}{d t}
$$

$$
\frac{\partial^{2} E}{\partial x^{2}}=\mu_{0} \epsilon_{0} \frac{\partial^{2} E}{\partial t^{2}}
$$

$$
\frac{\partial^{2} B}{\partial x^{2}}=\mu_{0} \epsilon_{0} \frac{\partial^{2} B}{\partial t^{2}}
$$

$$
\begin{aligned}
E & =E_{\max } \cos (k x-\omega t) \\
B & =B_{\max } \cos (k x-\omega t)
\end{aligned}
$$

Measuring The Speed Of Light

High Technology of 1880's: Fizeau's measurement of speed of light

1. Shoot pulses of light to mirror
2. Light should take $t=2 \mathrm{~L} / \mathrm{c}$ to get back to Observer
3. Adjust the angular velocity of wheel such that reflected light from mirror makes it back to observer thru the next gap

Newtonian Relativity \& Light !

Light source, mirror \& observer moving thru some medium with velocity V Galilean Relativity \rightarrow

- If the alien measures velocity of light = c
-Then observer must measure speed of light = c-v when it is leaving him $=c+\mathrm{v}$ when it is reflected back

But Maxwell's Eq \rightarrow speed of light is constant in a medium??

Must it be that laws of Mechanics behave differently from E\&M in different inertial frames of references ? ...if so how inelegant would nature be!

