

Physics 2D Lecture Slides Lecture 1

Jan. 4, 2010

Modern Physics (PHYS 2D)

- Exploration of physical ideas and phenomena related to
 - High velocities and acceleration (Einstein's Theory of Relativity)
 - Sub Atomic structure and Dynamics (Quantum Physics)
 - The very small (quarks) and the Very large (cosmos)
- A glimpse of the cutting edge of thought in Physics and technology that it is generating
- A different kind of course:
 - Exciting (Gee Whiz stuff) BUT intense
 - About 40 Nobel Prize winning ideas/experiment in course (~4 / week!)
 - Non-intuitive (how do you figure how electrons act inside an atom)
 - Will require abstract thought
 - Fountainhead of Chemistry, Biology, Electronics, Computing
 - Foundation for tomorrow's technology, chemistry and medicine

Quizzes, Final and Grades

- Course score = 60% Quiz + 40% Final Exam
 - 9 quizzes (every Friday starting Jan. 8), best 7 scores count
 - Two problems in each quiz, 50 minutes to do it
 - One problem HW like, other more interesting
 - Closed book exam, some formulae will be provided
 - No "CHEAT SHEETS" please
 - Blue Book required, Code numbers will be given at the 1st quiz. Bring calculator, check battery!
 - No makeup quizzes / See handout for Quiz regrade protocol
- Final Exam: March 15th, 11:30am 2.30 pm
 - Inform me of possible conflict within 2 weeks of course
 - Don't plan travel/vacation before finals schedule is confirmed!
 - No makeup finals for any reason

What to Expect / Not Expect on the Quiz / Final Handout

Some Useful Numbers, Equations and Identities

Speed of Light, $c = 3.0 \times 10^8 \text{m/s}$

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

$$x' = \gamma(x - vt)$$

$$t' = \gamma(t - \frac{xv}{c^2})$$

$$V'_x = \frac{V_x - v}{1 - \frac{V_x v}{c^2}}$$

$$p = \frac{mV_x}{\sqrt{1 - V_x^2/c^2}}$$

$$E = \frac{mc^2}{\sqrt{1 - V_x^2/c^2}} = K + mc^2$$

$$\nu_{obs} = \frac{\sqrt{1 + v/c}}{\sqrt{1 - v/c}} \nu_{source}$$

All constants will be provided No need to memorize them

Course Grade

- Our wish is that every body gets an A! So no curve
- Grading on an absolute scale. Roughly it looks like this:

Total Score	Grade
> 85	A +
> 70	A
> 50	В
> 35	C
< 25	F

• Hint: don't miss the early quizzes, they are easier

Expected Prior Knowledge: Brush up!

- Concepts learnt in Phys 2A, 2B and 2C will be used in 2D
- Familiarity with Vector Calculus & Differential Equations
- Knowledge of PHYSICS 2C material
 - Will need to know concepts in Waves : Interference & Diffraction
 - Hard to appreciate ideas in Modern Physics without them
 - Notes on 2C concepts needed will be posted on class web site
 - Consult TA or me if you need extra help
 - We can help you over weekends but pl. contact us early!!

How To Do Well In This Course

- Don't rely on your intuition! Always think thru the concept
- Read the assigned text BEFORE lecture to get a feel of the topic
- Attend lecture (ask questions during/before/after lecture) and discussion.
 Review lecture & discussion material using video-on-demand
- Attempt all homework problems yourself
 - Before looking at the problem solutions (available on web every Tuesday afternoon)
 - Before attending Problem Solving session
 - Work in sets of 2-3 to share ideas and problem solving approaches
- Do not try to memorize complicated formulae or Homework problems! Do not just accept a concept without understanding the logic
- Quarter goes fast, don't leave every thing for the week before exam!!
- All-nighters don't work in this course: Get decent sleep before Quiz or Finals
- Don't hesitate to show up at Prof. or TA office hour (they don't bite!)

Lecture 1: Relativity

- Describing a Physical Phenomenon
 - Event (s)
 - Observer (s)
 - Frame(s) of reference (the point of View!)
 - Inertial Frame of Reference
 - Accelerated Frame of Reference
- Newtonian Relativity and Inertial Frames
 - Laws of Mechanics and Frames of Reference
 - Galilean Transformation of coordinates
 - Addition law for velocities
- Maxwell's Equations & Light
 - Light as Electromagnetic wave
 - Speed of Light is not infinite!
 - Light needs no medium to propagate

Described on Black board

Event, Observer, Frame of Reference

- Event : Something happened \Rightarrow (x,y,z,t)
 - Same event can be described by different observers
- Observer(s): Measures event with a meter stick & a clock
- Frame of Reference :observer is standing on it
 - Inertial Frame of reference ← constant velocity, no force
- An event is not OWNED by an observer or frame of reference
- An event is something that happens, any observer in any reference frame can assign some (x,y,z,t) to it
- Different observers assign different space & time coordinates to same event
 - S describes it with : (x,y,z,t)
 - S' describes same thing with (x',y',x',t')

Figure 39.2 An event occurs at a point *P*. The event is seen by two observers in inertial frames S and S', where S' moves with a velocity **v** relative to S.

The Universe as a Clockwork of Reference Frames

"Imagining" Ref Frames And Observers

Newtonian/Galilean Relativity

Inertial Frame of Reference is a system in which a free body is not accelerating

Laws of Mechanics must be the same in all Inertial Frames of References

- ⇒Newton's laws are valid in all Inertial frames of references
- ⇒No Experiment involving laws of mechanics can differentiate between any two inertial frames of reference
- ⇒Only the relative motion of one frame of ref. w.r.t other can be detected
- ⇒ Notion of ABSOLUTE motion thru space is meaningless
- ⇒There is no such thing as a preferred frame of reference

Figure 39.1 (a) The observer in the truck sees the ball move in a vertical path when thrown upward. (b) The Earth observer sees the path of the ball as a parabola.

Galilean Transformation of Coordinates

Figure 39.2 An event occurs at a point *P*. The event is seen by two observers in inertial frames S and S', where S' moves with a velocity **v** relative to S.

Galilean Rules of Transformation

$$x' = x - vt$$

$$y' = y$$

$$z' = z$$

$$t' = t$$

Quote from Issac Newton Regarding Time

Absolute, true and mathematical time, of itself, and from nature, flows equably without relation to anything external

$$t = t$$

There is a universal clock

Or

All clocks are universal

Galilean Addition Law For Velocities

$$dx' = dx - v dt$$

$$dt = dt'$$

$$\frac{dx'}{dt'} = \frac{dx}{dt} - v$$

$$u_x' = u_x - v$$

This rule is used in our everyday observations (e.g. driving a car) and is consistent with our INTUITIVE notions of space and time

But what happens when I drive a car very fast !!

How fast: (v = ?)

- As fast as light can travel in a medium !!!

Light Is An Electromagnetic Wave (2C)

• Maxwell's Equations:

$$\oint_{S} \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\epsilon_{0}}$$

$$\oint_{S} \mathbf{B} \cdot d\mathbf{A} = 0$$

$$\oint_{S} \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi_{B}}{dt}$$

$$\oint_{B} \mathbf{B} \cdot d\mathbf{s} = \mu_{0}I + \mu_{0}\epsilon_{0} \frac{d\Phi_{E}}{dt}$$

$$\frac{\partial^2 E}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$$

$$\frac{\partial^2 B}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 B}{\partial t^2}$$

Measuring The Speed Of Light

High Technology of 1880's: Fizeau's measurement of speed of light

Newtonian Relativity & Light!

Light source, mirror & observer moving thru some medium with velocity V Galilean Relativity →

- If the alien measures velocity of light = c
- •Then observer must measure speed of light = c-v when it is leaving him =c+v when it is reflected back

But Maxwell's Eq → speed of light is constant in a medium??

Must it be that laws of Mechanics behave differently from E&M in different inertial frames of references? ...if so how inelegant would nature be!