Physics 2D Lecture Slides Week of Feb 22, 2010

Sunil Sinha
UCSD Physics

Potential Barrier

	Description of Potential	
$\mathrm{U}=0$	$\mathrm{x}<0$	(Region I)
$\mathrm{U}=\mathrm{U}$	$0<\mathrm{x}<\mathrm{L}$	(Region II)
$\mathrm{U}=0$	$\mathrm{x}>\mathrm{L}$	(Region III)

Consider George as a "free Particle/Wave" with Energy E incident from Left Free particle are under no Force; have wavefunctions like

$$
\Psi=A \mathrm{e}^{\mathrm{i}(\mathrm{kx}-\mathrm{wt})} \text { or } \mathrm{B} \mathrm{e}^{\mathrm{i}(-\mathrm{kx}-\mathrm{wt})}
$$

Tunneling Through A Potential Barrier

Region I

정 지 STOP

II

Region III Prob?

- Classical \& Quantum Pictures compared: When $\mathrm{E}>\mathrm{U}$ \& when $\mathrm{E}<\mathrm{U}$ -Classically , an particle or a beam of particles incident from left encounters barrier:
-when $\mathrm{E}>\mathrm{U} \rightarrow$ Particle just goes over the barrier (gets transmitted)
-When $\mathrm{E}<\mathrm{U} \rightarrow$ particle is stuck in region I, gets entirely reflected, no transmission (T)
-What happens in a Quantum Mechanical barrier ? No region is inaccessible for particle since the potential is (sometimes small) but finite

Beam Of Particles With E < U Incident On Barrier From Left

Description Of WaveFunctions in Various regions: Simple Ones first
In Region I: $\quad \Psi_{\mathrm{I}}(x, t)=A e^{i(k x-\omega t)}+B e^{i(-k x-\omega t)}=$ incident + reflected Waves

$$
\text { with } \mathrm{E}=\hbar \omega=\frac{\hbar^{2} k^{2}}{2 m}
$$

define Reflection Coefficient : $\mathrm{R}=\frac{|\mathrm{B}|^{2}}{|\mathrm{~A}|^{2}}=$ frac of incident wave intensity reflected back
In Region III: $\Psi_{\text {III }}(x, t)=F e^{i(k x-\omega t)}+G e^{i(-k x-\omega t)}=$ transmitted
Note: $G e^{i(-k x-\omega t)}$ corresponds to wave incident from right !
This piece does not exist in the scattering picture we are thinking of now $(\mathrm{G}=0)$
So $\Psi_{\mathrm{III}}(x, t)=F e^{i(k x-\omega t)}$ represents transmitted beam. Define $\mathrm{T}=\frac{|\mathrm{F}|^{2}}{|\mathrm{~A}|^{2}}$
Unitarity Condition $\Rightarrow \mathrm{R}+\mathrm{T}=1$ (particle is either reflected or transmitted)

Wave Function Across The Potential Barrier

In Region II of Potential U

TISE: $-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi(x)}{d x^{2}}+U \psi(x)=E \psi(x)$
$\Rightarrow \frac{d^{2} \psi(x)}{d x^{2}}=\frac{2 m}{\hbar^{2}}(U-E) \psi(x)$

$$
=\alpha^{2} \psi(x)
$$

with $\alpha^{2}=\frac{\sqrt{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}}{\hbar} ; \quad \mathrm{U}>\mathrm{E} \Rightarrow \alpha^{2}>0$
Solutions are of form $\psi(x) \propto e^{ \pm \alpha x}$

$$
\Psi_{I I}(x, t)=C e^{+\alpha x-i \omega t}+D e^{-\alpha x-i \omega t} 0<\mathrm{x}<\mathrm{L}
$$

To determine $\mathrm{C} \& \mathrm{D} \Rightarrow$ apply matching cond.
$\Psi_{I I}(x, t)=$ continuous across barrier $(\mathrm{x}=0, \mathrm{~L})$

$$
\frac{d \Psi_{I I}(x, t)}{d x}=\text { continuous across barrier }(\mathrm{x}=0, \mathrm{~L})
$$

Continuity Conditions Across Barrier

At $x=0$, continuity of $\psi(x) \Rightarrow$

$$
\begin{equation*}
A+B=C+D \tag{1}
\end{equation*}
$$

At $\mathrm{x}=0$, continuity of $\frac{d \psi(\mathrm{x})}{d x} \Rightarrow$

$$
i k A-i k B=\alpha C-\alpha D
$$

Similarly at $\mathrm{x}=\mathrm{L}$ continuity of $\psi(\mathrm{x}) \Rightarrow$

$$
\begin{equation*}
C e^{-\alpha L}+D e^{+\alpha L}=F e^{i k L} \tag{3}
\end{equation*}
$$

at $\mathrm{x}=\mathrm{L}$, continuity of $\frac{d \psi(\mathrm{x})}{d x} \Rightarrow$

$$
\begin{equation*}
-(\alpha \mathrm{C}) e^{-\alpha L}+(\alpha \mathrm{D}) e^{\alpha L}=i k F e^{i k L} \tag{4}
\end{equation*}
$$

Four equations \& four unknowns
Cant determine A,B,C,D but if you
Divide thruout by A in all 4 equations :

\Rightarrow ratio of amplitudes \rightarrow relations for $\mathrm{R} \& \mathrm{~T}$
That's what we need any way

Potential Barrier when E < U

Expression for Transmission Coeff $\mathrm{T}=\mathrm{T}(\mathrm{E})$:
Depends on barrier Height U, barrier Width L and particle Energy E

$$
\mathrm{T}(\mathrm{E})=\left[1+\frac{1}{4}\left(\frac{U^{2}}{E(U-E)}\right) \sinh ^{2}(\alpha L)\right]^{-1} ; \quad \alpha=\frac{\sqrt{2 m(U-E)}}{\hbar}
$$

and $\quad R(E)=1-T(E)$.........what's not transmitted is reflected

Above equation holds only for $\mathrm{E}<\mathrm{U}$
For $\mathrm{E}>\mathrm{U}, \alpha=$ imaginary\#
$\operatorname{Sinh}(\alpha \mathrm{L})$ becomes oscillatory This leads to an Oscillatory $\mathrm{T}(\mathrm{E})$ and Transmission resonances occur where For some specific energy ONLY, $\mathrm{T}(\mathrm{E})=1$
At other values of E , some particles are reflected back ..even though $\mathrm{E}>\mathrm{U}$!!

That's the Wave nature of the
Quantum particle

Tunneling across a barrier

Q: 2 Cu wires are seperated by insulating Oxide layer. Modeling the Oxide layer as a square barrier of height $\mathrm{U}=10.0 \mathrm{eV}$, estimate the transmission coeff for an incident beam of electrons of $\mathrm{E}=7.0 \mathrm{eV}$ when the layer thickness is
(a) 5.0 nm (b) 1.0 nm

Q: If a 1.0 mA current in one of the intwined wires is incident on Oxide layer, how much of this current passes thru the Oxide layer on to the adjacent wire if the layer thickness is 1.0 nm ? What becomes of the remaining current?
$\mathrm{T}(\mathrm{E})=\left[1+\frac{1}{4}\left(\frac{U^{2}}{E(U-E)}\right) \sinh ^{2}(\alpha L)\right]^{-1} \quad \alpha=\frac{\sqrt{2 \mathrm{~m}(\mathrm{U}-\mathrm{E})}}{\hbar}, k=\frac{\sqrt{2 \mathrm{mE}}}{\hbar}$
$\mathrm{T}(\mathrm{E})=\left[1+\frac{1}{4}\left(\frac{U^{2}}{E(U-E)}\right) \sinh ^{2}(\alpha L)\right]^{-1}$
Use $\hbar=1.973 \mathrm{keV} . \dot{\mathrm{A}} / \mathrm{c}, \mathrm{m}_{\mathrm{e}}=511 \mathrm{keV} / \mathrm{c}^{2}$

$$
\Rightarrow \alpha=\frac{\sqrt{2 m_{e}(U-E)}}{\hbar}=\frac{\sqrt{2 \times 511 \mathrm{kev} / \mathrm{c}^{2}\left(3.0 \times 10^{-3} \mathrm{keV}\right)}}{1.973 \mathrm{keV} \cdot \dot{\mathrm{~A}} / \mathrm{c}}=0.8875 \dot{\mathrm{~A}}^{-1}
$$

Substitute in expression for $\mathrm{T}=\mathrm{T}$ (E)

$$
\mathrm{T}=\left[1+\frac{1}{4}\left(\frac{10^{2}}{7(10-7)}\right) \sinh ^{2}\left(0.8875 \dot{\mathrm{~A}}^{-1}\right)(50 \dot{\mathrm{~A}})\right]^{-1}=0.963 \times 10^{-38}(\text { small })!!
$$

However, for $\mathrm{L}=10 \dot{\mathrm{~A}} ; \mathrm{T}=0.657 \times 10^{-7}$

Reducing barrier width by $\times 5$ leads to Trans. Coeff enhancement by 31

 orders of magnitude !!!1 mA current $=\mathrm{I}=\frac{\mathrm{Q}=\mathrm{Nq}_{\mathrm{e}}}{\mathrm{t}} \Rightarrow N=6.25 \times 10^{15}$ electrons
$\mathrm{N}_{\mathrm{T}}=\#$ of electrons that escape to the adjacent wire (past oxide layer)
$\mathrm{N}_{\mathrm{T}}=$ N.T $=\left(6.25 \times 10^{15}\right.$ electrons $) \times \mathrm{T}$;
For $\mathrm{L}=10 \dot{\mathrm{~A}}, \mathrm{~T}=0.657 \times 10^{-7} \Rightarrow \mathrm{~N}_{\mathrm{T}}=4.11 \times 10 \Rightarrow I_{T}=65.7 p A!!$

Oxide thickness makes all the difference ! That's why from time-to-time one needs to Scrape off the green stuff off the naked wires

Current Measured on the first wire is sum of incident+reflected currents and current measured on "adjacent" wire is the I_{T}

QM in 3 Dimensions

- Learn to extend S. Eq and its solutions from "toy" examples in 1-Dimension (x) \rightarrow three orthogonal dimensions ($\mathrm{r}=$ x,y,z)

$$
\vec{r}=\hat{i} x+\hat{j} y+\hat{k} z
$$

- Then transform the systems
- Particle in 1D rigid box \rightarrow 3D rigid box
- 1D Harmonic Oscillator \rightarrow 3D Harmonic Oscillator
- Keep an eye on the number of different integers needed to specify system $1 \rightarrow 3$ (corresponding to 3 available degrees of freedom $\mathrm{x}, \mathrm{y}, \mathrm{z}$)

Quantum Mechanics In 3D: Particle in 3D Box

The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates

Time Dependent Schrodinger Eqn:

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi(x, y, z, t)+U(x, y, z) \Psi(x, t)=i \hbar \frac{\partial \Psi(x, y, z, t)}{\partial t} \ldots . . \operatorname{In} 3 \mathrm{D} \\
& \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}} \\
& \text { So }-\frac{\hbar^{2}}{2 m} \nabla^{2}=\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial y^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial z^{2}}\right)=[K] \\
& =\left[\mathrm{K}_{\mathrm{x}}\right]+\left[\mathrm{K}_{\mathrm{x}}\right]+\left[\mathrm{K}_{\mathrm{x}}\right] \\
& \text { so }[H] \Psi(x, t)=[E] \Psi(x, t) \text { is still the Energy Conservation Eq }
\end{aligned}
$$

Stationary states are those for which all probabilities are constant in time and are given by the solution of the TDSE in seperable form:

$$
\Psi(x, y, z, t)=\Psi(\vec{r}, t)=\psi(\overrightarrow{\mathrm{r}}) \mathrm{e}^{-i \omega t}
$$

This statement is simply an extension of what we derived in case of 1D time-independent potential

Particle in 3D Rigid Box : Separation of Orthogonal Spatial (x, y, z) Variables

TISE in 3D: $-\frac{\hbar^{2}}{2 \mathrm{~m}} \nabla^{2} \psi(x, y, z)+U(x, y, z) \psi(x, y, z)=E \psi(x, y, z)$
$\mathrm{x}, \mathrm{y}, \mathrm{z}$ independent of each other, write $\psi(x, y, z)=\psi_{1}(x) \psi_{2}(y) \psi_{3}(z)$ and substitute in the master TISE, after dividing thruout by $\psi=\psi_{1}(x) \psi_{2}(y) \psi_{3}(z)$ and noting that $\mathrm{U}(\mathrm{r})=0$ for $(0<\mathrm{x}, \mathrm{y}, \mathrm{z},<\mathrm{L}) \Rightarrow$
$\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{1}(x)} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{2}(y)} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}\right)+\left(-\frac{\hbar^{2}}{2 m} \frac{1}{\psi_{3}(z)} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}\right)=E=$ Const
This can only be true if each term is constant for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \Rightarrow$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{1}(x)}{\partial x^{2}}=E_{1} \psi_{1}(x) ;-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{2}(y)}{\partial y^{2}}=E_{2} \psi_{2}(y) ;-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi_{3}(z)}{\partial z^{2}}=E_{3} \psi_{3}(z)
$$

With $E_{1}+E_{2}+E_{3}=E=$ Constant (Total Energy of 3D system)
Each term looks like particle in 1D box (just a different dimension)
So wavefunctions must be like $\psi_{1}(x) \propto \sin k_{1} \mathrm{X}, \psi_{2}(y) \propto \sin k_{2} y, \psi_{3}(z) \propto \sin k_{3} z$

Particle in 3D Rigid Box: Separation of Orthogonal Variables

Wavefunctions are like $\psi_{1}(x) \propto \sin k_{1} \mathrm{x}, \psi_{2}(y) \propto \sin k_{2} \mathrm{y}, \psi_{3}(z) \propto \sin k_{3} z$
Continuity Conditions for $\psi_{\mathrm{i}} \Rightarrow n_{i} \pi=k_{i} L$
Leads to usual Quantization of Linear Momentum $\overrightarrow{\mathrm{p}}=\hbar \overrightarrow{\mathrm{k}}$.....in 3D

$$
p_{x}=\left(\frac{\pi \hbar}{L}\right) n_{1} ; p_{y}=\left(\frac{\pi \hbar}{L}\right) n_{2} ; p_{z}=\left(\frac{\pi \hbar}{L}\right) n_{3}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}=1,2,3, . . \infty\right)
$$

Note: by usual Uncertainty Principle argument neither of $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}=0$! (why?)
Particle Energy $\mathrm{E}=\mathrm{K}+\mathrm{U}=\mathrm{K}+0=\frac{1}{2 \mathrm{~m}}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right)$
Energy is again quantized and brought to you by integers $\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$ (independent) and $\psi(\overrightarrow{\mathrm{r}})=\mathrm{A} \sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z \quad(\mathrm{~A}=$ Overall Normalization Constant $)$
$\Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi(\overrightarrow{\mathrm{r}}) \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{\hbar} t}=A\left[\sin k_{1} \mathrm{X} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{e} \frac{\mathrm{E}}{\hbar} t}$

Particle in 3D Box :Wave function Normalization Condition

$\Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi(\overrightarrow{\mathrm{r}}) \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{\hbar} t}=A\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{\hbar} t}$
$\Psi^{*}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\psi^{*}(\overrightarrow{\mathrm{r}}) \mathrm{e}^{\mathrm{i} \frac{\mathrm{E}}{\hbar} t}=A\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{\mathrm{i} \frac{\mathrm{E}}{} \mathrm{t}}$
$\Psi^{*}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \Psi(\overrightarrow{\mathrm{r}}, \mathrm{t})=A^{2}\left[\sin ^{2} k_{1} \mathrm{x} \sin ^{2} k_{2} \mathrm{y} \sin ^{2} k_{3} z\right]$
Normalization Condition : $1=\iiint_{x, y, z} \mathrm{P}(\mathrm{r}) \mathrm{dx} \mathrm{dydz} \Rightarrow$
$1=A^{2} \int_{\mathrm{x}=0}^{\mathrm{L}} \sin ^{2} k_{1} \mathrm{x} d \mathrm{x} \int_{\mathrm{y}=0}^{\mathrm{L}} \sin ^{2} k_{2} \mathrm{y} d \mathrm{y} \int_{\mathrm{z}=0}^{\mathrm{L}} \sin ^{2} k_{3} \mathrm{zdz}=A^{2}\left(\frac{L}{2}\right)\left(\frac{L}{2}\right)\left(\frac{L}{2}\right)$
$\Rightarrow A=\left[\frac{2}{L}\right]^{\frac{3}{2}}$ and $\Psi\left(\overrightarrow{\mathrm{r}, \mathrm{t})=\left[\frac{2}{L}\right]^{\frac{3}{2}}\left[\sin k_{1} \mathrm{x} \sin k_{2} \mathrm{y} \sin k_{3} z\right] \mathrm{e}^{-\mathrm{i} \frac{\mathrm{E}}{\hbar}} t}\right.$

Particle in 3D Box : Energy Spectrum \& Degeneracy

$\mathrm{E}_{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}}=\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}\left(n_{1}^{2}+n_{2}^{2}+n_{3}^{2}\right) ; \mathrm{n}_{\mathrm{i}}=1,2,3 \ldots \infty, n_{i} \neq 0$
Ground State Energy $\mathrm{E}_{111}=\frac{3 \pi^{2} \hbar^{2}}{2 m L^{2}}$
Next level $\Rightarrow 3$ Excited states $\mathrm{E}_{211}=\mathrm{E}_{121}=\mathrm{E}_{112}=\frac{6 \pi^{2} \hbar^{2}}{2 m L^{2}}$
Different configurations of $\psi(\mathrm{r})=\psi(\mathrm{x}, \mathrm{y}, \mathrm{z})$ have same energy \Rightarrow degeneracy

Degenerate States

Ground State

E_{111}

$$
\mathrm{E}_{211}=\mathrm{E}_{121}=\mathrm{E}_{112}=\frac{6 \pi^{2} \hbar^{2}}{2 m L^{2}}
$$

