Comment on reflection/transmission at a potential barrier:

For the case of a particle moving from a region with potential equal to 0, with energy E> U across a single barrier of height U into a region where the potential = U, it is NOT TRUE

that

R + T = 1

What IS true is that *particle flux* is conserved. Particle flux is measured by the group velocity (h-bar k/m) times the modulus squared of the wavefunction, i.e. apart from the same constants it is $k_1^* |A|^2$ for the incident beam and $(-k_1^* |B|^2)$ for the reflected beam (if flux is measured to the right i.e. towards x > 0), but $k_2^* |C|^2$ for the transmitted beam.

Thus the condition is $k_1^* |A|^2 = k_1^* |B|^2 + k_2^* |C|^2$

Dividing through by this becomes

 $R + T^* k_2/k_1 = 1$

Remember that $k_1^2 = [2m/(h-bar)2*E]$ and $k_2^2 = [2m/(h-bar)2*(E-U)]$

Note if the particle tunneled through and came back out into a region U =0 as in the finite potential well problem, then $k_2 = k_1$ and R + T = 1