PHYSICS 2B PROF. HIRSCH

Formulas:

 $\sin 30^{\circ} = \cos 60^{\circ} = 1/2, \ \cos 30^{\circ} = \sin 60^{\circ} = \sqrt{3}/2, \ \sin 45^{\circ} = \cos 45^{\circ} = \sqrt{2}/2$

 $F = k \frac{q_1 q_2}{r^2}$ Coulomb's law ; $k = 9 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$; $\vec{F}_{12} = \frac{k q_1 q_2}{|\vec{r} - \vec{r}|^3} (\vec{r}_2 - \vec{r}_1)$ Electric field due to charge q at distance r: $\vec{E} = \frac{kq}{r^2}\hat{r}$; Force on charge Q: $\vec{F} = Q\vec{E}$ Electric field of_dipole: along dipole axis / perpendicular: $E = \frac{2kp}{r^3}$ / $E = \frac{kp}{r^3}$ (p=qd) Energy of and torque on dipole in E-field: $U = -\vec{p} \cdot \vec{E}$, $\vec{\tau} = \vec{p} \times \vec{E}$ Linear, surface, volume charge density : $dq = \lambda ds$, $dq = \sigma dA$, $dq = \rho dV$ Electric field of infinite: line of charge: $E = \frac{2k\lambda}{r}$; sheet of charge: $E = 2\pi k\sigma = \sigma/(2\varepsilon_0)$ Gauss law: $\Phi = \oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\varepsilon_0}$; $\Phi = \text{electric flux}$; $k = \frac{1}{4\pi\varepsilon_0}$; $\varepsilon_0 = 8.85 \times 10^{-12} C^2 / Nm^2$ $U_B - U_A = \Delta U_{AB} = -W_{AB} = -\int_{a}^{B} \vec{F} \cdot \vec{dl} = -\int_{a}^{B} \vec{qE} \cdot \vec{dl} = q\Delta V_{AB} = q(V_B - V_A)$ V=N/C $V = \frac{kq}{r}$; $V = \int \frac{kdq}{r}$; $V = \frac{kp\cos\theta}{r^2}$ (dipole); $E_l = -\frac{\partial V}{\partial l}$; $\vec{E} = -\vec{\nabla}V$ Electrostatic energy: $U = k \frac{q_1 q_2}{r}$; Capacitors: Q = CV; with dielectric: $C = \kappa C_0$; $\varepsilon_0 = 8.85 \, pF / m$ $C = \frac{\varepsilon_0 A}{d}$ parallel plates ; $C = \frac{2\pi\varepsilon_0 L}{\ln(h/a)}$ cylindrical ; $C = 4\pi\varepsilon_0 \frac{ab}{b-a}$ spherical Energy stored in capacitor: $U = \frac{Q^2}{2C} = \frac{1}{2}QV = \frac{1}{2}CV^2$; $U = \int dv \, u_E$; $u_E = \frac{1}{2}\varepsilon_0 E^2$ Capacitors in parallel: $C = C_1 + C_2^{-1}$; in series: $C = C_1 C_2 / (C_1 + C_2)$ Elementary charge: $e = 1.6 \times 10^{-19} C$ $I = \frac{dq}{dt} = \int \vec{J} \cdot d\vec{A} \quad ; \quad \vec{J} = ne\vec{v}_d \quad ; \quad v_d = \frac{eE\tau}{m} \quad ; \quad \rho = \frac{m}{ne^2\tau} \quad ; \quad R = \rho \frac{\ell}{\Lambda} \quad ; \quad \vec{E} = \rho \vec{J}, \quad \vec{J} = \sigma \vec{E}$ $V = IR ; P = VI = I^2 R = V^2 / R ; P_{emf} = \varepsilon I ; R_{eq} = R_1 + R_2 \text{ (series)}; R_{eq}^{-1} = R_1^{-1} + R_2^{-1} \text{ (parallel)}$ Charging capacitor: $Q(t) = C\varepsilon(1 - e^{-t/RC})$; Discharging capacitor: $Q(t) = Q_0 e^{-t/RC}$ Force on moving charge : $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$; force on wire : $d\vec{F} = Id\vec{\ell} \times \vec{B}$ Circular motion: $a = \frac{v^2}{r}$; radius $r = \frac{mv}{aB}$; period $T = \frac{2\pi \text{ m}}{aB}$ Magnetic dipole : $\vec{\mu} = I\vec{A}$; torque : $\vec{\tau} = \vec{\mu} \times \vec{B}$; energy : $U = -\vec{\mu} \cdot \vec{B}$ Biot - Savart law : $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{\ell} \times \hat{r}}{r^2}$; $\mu_0 = 4\pi \times 10^{-7} \frac{N}{A^2}$; Ampere's law : $\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I_{enc}$ Long wire: $B = \frac{\mu_0 I}{2\pi r}$; loop, along axis: $B = \frac{\mu_0 I a^2}{2(a^2 + z^2)^{3/2}}$; dipole: $\vec{B} = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{x^3}$ solenoid: $B = \mu_0 In$; toroid: $B = \frac{\mu_0 NI}{2\pi r}$; Gauss law for magnetism: $\oint \vec{B} \cdot d\vec{A} = 0$

Faraday law: $\varepsilon = -\frac{d\Phi_B}{dt} = \oint \vec{E} \cdot d\vec{s}$; $\Phi_B = \int \vec{B} \cdot d\vec{A}$ magnetic flux

Mutual inductance : $M = \frac{\Phi_2}{I_1} = \frac{\Phi_1}{I_2}$; $\varepsilon_2 = -M \frac{dI_1}{dt}$; $\varepsilon_1 = -M \frac{dI_2}{dt}$ Self - inductance : $L = \frac{\Phi_B}{I}$; $\varepsilon_L = -L \frac{dI}{dt}$; $L = \mu_0 n^2 A \ell$ for solenoid Magnetic energy : $U_B = \frac{1}{2} L I^2$; $u_B = \frac{B^2}{2\mu_0}$ RL circuit : $I = \frac{\varepsilon}{R} (1 - e^{-t/\tau_L})$ (rise) ; $I = I_0 e^{-t/\tau_L}$ (decay) ; $\tau_L = L/R$ LC oscillations : $q(t) = q_p \cos(\omega_0 t)$; $I(t) = -\omega_0 q_p \sin(\omega_0 t)$; $\omega_0 = \frac{1}{\sqrt{LC}}$

<u>There are 8 problems. You get 1 point for correct answer, 0 points for incorrect</u> <u>answers, 0.2 points for no answer (up to 5 non-answers). This is Test Form A</u>

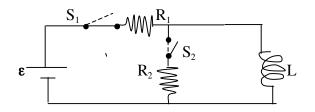
Problems 1 and 2

The mutual inductance of the two loops shown is 2H. Loop 2 has resistance 200 Ω . At time t=0, a current is supplied to loop 1 that increases at a constant rate in the time interval t=0 to t=10s. At time t=0.5s, the induced current in loop 2 is 1mA (=10⁻³A).

<u>Problem 1</u>: At time t=2s, the induced current in loop 2 is (a) 2mA; (b) 4mA; (c) 0.5mA; (d) 1mA; (e) 8mA

<u>Problem 2</u>: the current supplied to loop 1 at time t=1s is (a) 1mA; (b) 1A; (c) 0.1A; (d) 2mA; (e) 0.2A

Problems 3 and 4

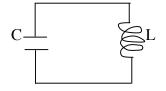

The round loop has radius 1m and resistance 0.1Ω . The small square loop is centered at the center of the round loop and has side length 0.1m. You may assume that 0.1m is much smaller than 1m.

A current is supplied to the small square loop that increases at a constant rate, it is 0 at time t=0 and 100A at time t=1s. A current will be induced in the round loop.

<u>Problem 3</u>: The mutual inductance of this arrangement is (a) $2\pi x 10^{-9}$ H; (b) $\pi x 10^{-9}$ H; (c) $4\pi x 10^{-8}$ H; (d) $0.5\pi x 10^{-8}$ H; (e) $2x 10^{-9}$ H

<u>Problem 4</u>: The current induced in the round loop at time t=0.5s is (a) 50A ; (b) $\pi x 10^{-7}$ A ; (c) 0.1A ; (d) $2x 10^{-8}$ A ; (e) $2\pi x 10^{-6}$ A

Problems 5 and 6


In the circuit shown, $R_1=1\Omega$, $R_2=2\Omega$, L=1H. The switch S_1 has been closed for a long time and the switch S_2 has been open for a long time. The emf of the battery is $\varepsilon = 1V$. Then, the switch S_2 is closed while the switch S_1 remains closed. Call t=0 the time when this occurs.

<u>Problem 5:</u> the current flowing through R_2 at time t=1s, i.e. 1s after the switch S_2 was closed, is (a) 0A ; (b) 0.61A ; (c) 1A ; (d) 0.55A ; (e) 0.33A

<u>Problem 6:</u> then, at time t=10s (i.e. 10s after the switch S_2 was closed), switch S_1 is opened (the switch S_2 remains closed). The current flowing through R_2 at time t=11s, i.e. 1s after the switch S_1 was opened, is

(a) 0A; (b) 0.61A; (c) 0.20A; (d) 0.05A; (e) 0.14A

Problems 7 and 8

In the LC circuit shown, the charge in the capacitor is 4C at time t=0 and the current in the inductor is 0. The charge in the capacitor starts decreasing and reaches zero at time t=3s. The value of L is 2mH.

<u>Problem 7</u>: what is the current in the inductor at time t=3s? (a) 2.6A; (b) 1.4A; (c) 2.1A; (d) 3.2A; (e) 0.8A

<u>Problem 8:</u> what is the energy stored in the capacitor at t=0? (a) 1.1mJ; (b) 2.2mJ; (c) 3.3mJ; (d) 4.4mJ; (e) 5.5mJ