## Formulas:

$\sin 30^{\circ}=\cos 60^{\circ}=1 / 2, \quad \cos 30^{\circ}=\sin 60^{\circ}=\sqrt{3} / 2, \sin 45^{\circ}=\cos 45^{\circ}=\sqrt{2} / 2$
$F=k \frac{q_{1} q_{2}}{r^{2}}$ Coulomb's law $; k=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \quad ; \quad \vec{F}_{12}=\frac{k q_{1} q_{2}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{3}}\left(\vec{r}_{2}-\vec{r}_{1}\right)$
Electric field due to charge q at distance $\mathrm{r}: \quad \vec{E}=\frac{k q}{r^{2}} \hat{r}$; Force on charge $\mathrm{Q}: \vec{F}=Q \vec{E}$
Electric field of dipole: along dipole axis / perpendicular: $E=\frac{2 k p}{x^{3}} / \quad E=\frac{k p}{y^{3}}(\mathrm{p}=\mathrm{qd})$
Energy of and torque on dipole in E-field: $U=-\vec{p} \cdot \vec{E} \quad, \vec{\tau}=\vec{p} \times \vec{E}$
Linear, surface, volume charge density : $d q=\lambda d s, \quad d q=\sigma d A \quad, d q=\rho d V$
Electric field of infinite: line of charge : $E=\frac{2 k \lambda}{r} ; \quad$ sheet of charge : $E=2 \pi k \sigma=\sigma /\left(2 \varepsilon_{0}\right)$
Gauss law: $\quad \Phi=\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {enc }}}{\varepsilon_{0}} \quad ; \quad \Phi=$ electric flux $; k=\frac{1}{4 \pi \varepsilon_{0}} ; \varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$ $U_{B}-U_{A}=\Delta U_{A B}=-W_{A B}=-\int_{A}^{B} \overrightarrow{\mathrm{~F}} \cdot \overrightarrow{d l}=-\int_{A}^{B} q \vec{E} \cdot \overrightarrow{d l} \quad=q \Delta V_{A B}=q\left(V_{B}-V_{A}\right) \quad \mathrm{V}=\mathrm{N} / \mathrm{C}$
$V=\frac{k q}{r} ; \mathrm{V}=\int \frac{k d q}{r} ; \quad V=\frac{k p \cos \theta}{r^{2}}$ (dipole) $; \quad E_{l}=-\frac{\partial V}{\partial l} \quad ; \quad \overrightarrow{\mathrm{E}}=-\vec{\nabla} \mathrm{V}$
Electrostatic energy: $U=k \frac{q_{1} q_{2}}{r}$; Capacitors : $Q=C V$; with dielectric : $\mathrm{C}=\kappa \mathrm{C}_{0} ; \varepsilon_{0}=8.85 \mathrm{pF} / \mathrm{m}$ $C=\frac{\varepsilon_{0} A}{d}$ parallel plates ; $C=\frac{2 \pi \varepsilon_{0} L}{\ln (b / a)}$ cylindrical ; $C=4 \pi \varepsilon_{0} \frac{a b}{b-a}$ spherical
Energy stored in capacitor : $U=\frac{Q^{2}}{2 C}=\frac{1}{2} Q V=\frac{1}{2} C V^{2} ; \quad U=\int d v u_{E} ; u_{E}=\frac{1}{2} \varepsilon_{0} E^{2}$
Capacitors in parallel: $C=C_{1}+C_{2} \quad$; in series: $\quad C=C_{1} C_{2} /\left(C_{1}+C_{2}\right)$
Elementary charge: $e=1.6 \times 10^{-19} \mathrm{C}$
$I=\frac{d q}{d t}=\int \vec{J} \cdot d \vec{A} ; \vec{J}=n e \vec{v}_{d} ; v_{d}=\frac{e E \tau}{m} ; \rho=\frac{m}{n e^{2} \tau} ; R=\rho \frac{\ell}{A} ; \vec{E}=\rho \vec{J}, \vec{J}=\sigma \vec{E}$
$V=I R ; P=V I=I^{2} R=V^{2} / R ; P_{e m f}=\varepsilon I ; R_{e q}=R_{1}+R_{2}$ (series) ; $R_{e q}^{-1}=R_{1}^{-1}+R_{2}^{-1}$ (parallel)
Charging capacitor: $Q(t)=C \varepsilon\left(1-e^{-t / R C}\right) \quad ; \quad$ Discharging capacitor: $Q(t)=Q_{0} e^{-t / R C}$
Force on moving charge : $\vec{F}=q(\vec{E}+\vec{v} \times \vec{B}) ;$ force on wire : $d \vec{F}=I \overrightarrow{d \ell} \times \vec{B}$
Circular motion : $a=\frac{v^{2}}{r} ;$ radius $r=\frac{m v}{q B} ;$ period $T=\frac{2 \pi \mathrm{~m}}{\mathrm{qB}}$
Magnetic dipole: $\vec{\mu}=\mathrm{I} \overrightarrow{\mathrm{A}}$; torque : $\vec{\tau}=\vec{\mu} \times \vec{B}$; energy: $U=-\vec{\mu} \cdot \vec{B}$
Biot-Savart law : $d \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{\ell} \times \hat{r}}{r^{2}} ; \mu_{0}=4 \pi \times 10^{-7} \frac{N}{A^{2}} ;$ Ampere's law : $\oint \vec{B} \cdot d \vec{\ell} \ell=\mu_{0} I_{\text {enc }}$ Long wire : $B=\frac{\mu_{0} I}{2 \pi r} \quad ; \quad$ loop, along axis : $B=\frac{\mu_{0} I a^{2}}{2\left(a^{2}+z^{2}\right)^{3 / 2}} \quad ; \quad$ dipole : $\vec{B}=\frac{\mu_{0}}{2 \pi} \frac{\vec{\mu}}{x^{3}}$ solenoid : $B=\mu_{0} I n \quad ;$ toroid: $\quad B=\frac{\mu_{0} N I}{2 \pi r} ; \quad$ Gauss law for magnetism: $\quad \oint \vec{B} \cdot d \vec{A}=0$

Faraday law : $\quad \varepsilon=-\frac{d \Phi_{B}}{d t}=\oint \vec{E} \cdot d \vec{s} ; \quad \Phi_{B}=\int \vec{B} \cdot d \vec{A} \quad$ magnetic flux

Mutual inductance : $M=\frac{\Phi_{2}}{I_{1}}=\frac{\Phi_{1}}{I_{2}} \quad ; \quad \varepsilon_{2}=-M \frac{d I_{1}}{d t} \quad ; \quad \varepsilon_{1}=-M \frac{d I_{2}}{d t}$
Self - inductance : $L=\frac{\Phi_{B}}{I} \quad ; \quad \varepsilon_{\mathrm{L}}=-L \frac{d I}{d t} \quad ; \quad L=\mu_{0} n^{2} A \ell \quad$ for solenoid
Magnetic energy: $\quad U_{B}=\frac{1}{2} L I^{2} ; \quad u_{B}=\frac{B^{2}}{2 \mu_{0}}$
RL circuit : $I=\frac{\varepsilon}{R}\left(1-e^{-t / \tau_{L}}\right) \quad$ (rise) $\quad ; \quad I=I_{0} e^{-t / \tau_{L}} \quad$ (decay) $\quad ; \quad \tau_{\mathrm{L}}=L / R$
LC oscillations: $\quad q(t)=q_{p} \cos \left(\omega_{0} t\right) ; I(t)=-\omega_{0} q_{p} \sin \left(\omega_{0} t\right) \quad ; \quad \omega_{0}=\frac{1}{\sqrt{L C}}$
There are 8 problems. You get 1 point for correct answer, 0 points for incorrect answers, 0.2 points for no answer (up to 5 non-answers). This is Test Form A

## Problems 1 and 2



The mutual inductance of the two loops shown is 2 H . Loop 2 has resistance $200 \Omega$. At time $t=0$, a current is supplied to loop 1 that increases at a constant rate in the time interval $\mathrm{t}=0$ to $\mathrm{t}=10 \mathrm{~s}$. At time $\mathrm{t}=0.5 \mathrm{~s}$, the induced current in loop 2 is $1 \mathrm{~mA}\left(=10^{-3} \mathrm{~A}\right)$.

Problem 1: At time $t=2 \mathrm{~s}$, the induced current in loop 2 is
(a) 2 mA ; (b) 4 mA ; (c) 0.5 mA ; (d) 1 mA ; (e) 8 mA

Problem 2: the current supplied to loop 1 at time $\mathrm{t}=1 \mathrm{~s}$ is
(a) 1 mA ; (b) 1 A ; (c) 0.1 A ; (d) 2 mA ; (e) 0.2 A

## Problems 3 and 4



The round loop has radius 1 m and resistance $0.1 \Omega$. The small square loop is centered at the center of the round loop and has side length 0.1 m . You may assume that 0.1 m is much smaller than 1 m .
A current is supplied to the small square loop that increases at a constant rate, it is 0 at time $\mathrm{t}=0$ and 100 A at time $\mathrm{t}=1 \mathrm{~s}$. A current will be induced in the round loop.

Problem 3: The mutual inductance of this arrangement is
(a) $2 \pi \times 10^{-9} \mathrm{H}$
(b) $\pi \times 10^{-9} \mathrm{H}$;
; (c) $4 \pi \times 10^{-8} \mathrm{H}$
(d) $0.5 \pi \times 10^{-8} \mathrm{H}$
; (e) $2 \times 10^{-9} \mathrm{H}$

Problem 4: The current induced in the round loop at time $t=0.5 \mathrm{~s}$ is
(a) 50 A ; (b) $\pi \times 10^{-7} \mathrm{~A}$; (c) 0.1 A ; (d) $2 \times 10^{-8} \mathrm{~A}$; (e) $2 \pi \times 10^{-6} \mathrm{~A}$

## Problems 5 and 6



In the circuit shown, $\mathrm{R}_{1}=1 \Omega, \mathrm{R}_{2}=2 \Omega, \mathrm{~L}=1 \mathrm{H}$. The switch $\mathrm{S}_{1}$ has been closed for a long time and the switch $S_{2}$ has been open for a long time. The emf of the battery is $\varepsilon=1 \mathrm{~V}$. Then, the switch $S_{2}$ is closed while the switch $S_{1}$ remains closed. Call $t=0$ the time when this occurs.

Problem 5: the current flowing through $R_{2}$ at time $t=1 \mathrm{~s}$, i.e. 1 s after the switch $S_{2}$ was closed, is
(a) 0 A ; (b) 0.61 A ; (c) $1 \mathrm{~A} \quad$; (d) 0.55 A ; (e) 0.33 A

Problem 6: then, at time $t=10$ s (i.e. 10s after the switch $S_{2}$ was closed), switch $S_{1}$ is opened (the switch $S_{2}$ remains closed). The current flowing through $R_{2}$ at time $t=11 \mathrm{~s}$, i.e. 1 s after the switch $\mathrm{S}_{1}$ was opened, is
(a) 0 A ; (b) 0.61 A ; (c) 0.20 A ; (d) 0.05 A ; (e) 0.14 A

Problems 7 and 8


In the LC circuit shown, the charge in the capacitor is 4 C at time $\mathrm{t}=0$ and the current in the inductor is 0 . The charge in the capacitor starts decreasing and reaches zero at time $t=3 \mathrm{~s}$. The value of L is 2 mH .

Problem 7: what is the current in the inductor at time $\mathrm{t}=3 \mathrm{~s}$ ?
(a) $2.6 \mathrm{~A} \quad$; (b) $1.4 \mathrm{~A} \quad$; (c) 2.1 A ; (d) 3.2 A ; (e) 0.8 A

Problem 8: what is the energy stored in the capacitor at $\mathrm{t}=0$ ?
(a) 1.1 mJ ; (b) 2.2 mJ ; (c) 3.3 mJ ; (d) 4.4 mJ ; (e) 5.5 mJ

