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1 Problem 1

From Gauss’s law, we know the electric field of a uniformly charged sphere with
charge density ρ

ρ4πr3

3ε0
= E4πr2 (1)

E =
ρr

3εo
(2)

We are informed that

E(r =
R

2
) = 5 =

ρR

6εo
(3)

Rewriting ρ as the total charge Q divided over the volume of a sphere, and
dividing both sides by two, we obtain

2.5 =
Q

4πε0(2R)2
(4)

This gives us the Coulomb field at r = 2R and the magnitude of the field
(2.5).

2 Problem 2

The gain in kinetic energy from R to 2R is the loss in electrostatic potential
energy:

1
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mv21 = kQq(
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R
− 1

2R
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kQq

2R
(5)

Similarly for R to 3R,

1

2
mv22 = kQq(

1

R
− 1

3R
) =

2kQq

3R
(6)
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Hence,

v22
v21

=
2
3
1
2

(7)

Taking the square root, we obtain v2 = 1.15v1.

3 Problem 3

Exploit the spherical symmetry of the problem so that we can use Gauss’ law:

Qenclosed

ε0
= E4πr2 (8)

For the electric field to be zero, the total charge enclosed must be zero. The
total charge has two contributions from the inner and outer parts of the sphere:

0 = Qenclosed = ρ2
4πR3

3
+ ρ1

4π((2R)3 −R3)

3
(9)

Dividing out common factors, we obtain ρ2 = −7ρ1.

4 Problem 4

Same reasoning as in problem 3, now with cylindrical symmetry:

0 = Qenclosed = ρ2πR
2L+ ρ1π((2R)2 −R2)L (10)

We get ρ2 = −3ρ1.

5 Problem 5

The plate has area charge density σ = q/a2 because the charge is uniformly
distributed in volume. Apply Gauss’s law with a small (i.e. much smaller
than the plate) square pillbox that has area A and width 3a/100. This pillbox
encloses σA amount of charge.

σA

ε0
= 2EA (11)

The extra factor of 2 on the right is because the electric field is equal in
magnitude both above and below the plate. Rearranging, the electric field is
E = q/(2ε0a

2). This is the electric field of an infinite charged plate; the formula
is a good approximation for small distances above or below the plate.
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6 Problem 6

For a conducting surface, the charge is no longer uniformly distributed in vol-
ume. Any extra charge resides on the top and bottom surfaces. This is a
consequence of the mobility of charge inside a conductor. The key point is that
the projected area density of charge is still the same as in problem 5. We employ
the same method to obtain the same answer.

7 Problem 7

The two conducting spheres are connected by a conducting wire. Any con-
nected conductor must be at the same electrostatic potential. We estimate the
potential at the surfaces of the spheres by the formula for a charge distribution
with spherical symmetry V = kQ/r. Strictly speaking, the symmetry has been
broken in the direction of the other ball. However, if the second ball is very far
away, it is not a bad approximation.

V =
kq1
R

=
kq2

1.5R
(12)

Equality of potential at the surface of balls with different radii implies that
the electric fields are different:

E2

E1
=

kq2
(1.5R)2

kq1
R2

=
kq1

1.5R2

kq1
R2

=
1

1.5
= 0.67 (13)

In the second equality, we used the first equation (equality of potential).
In the limit that the smaller ball gets really small, we note this huge difference

in electric fields. Pointy parts of a conductor have larger electric fields than
smoother parts. This is why lightning rods are so pointy. The electric field at
the tip of a rod is so strong that the air breaks down and a current can flow
from the rod to the sky.

8 Problem 8

The charges form the vertices of a square of length 2a. To evaluate the potential
at a point, we superpose the potentials of all four charges. At point 1, we note
that the contributions from the positive and negative charge to the right cancel,
because they are equidistant to point 1 and have opposite charges. Hence,

V1 =
kq

a
+
kq

a
=

2kq

a
(14)
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At point 2, the contributions directly above and below also cancel, for the
same reason. We have contributions from the two positive charges to the left,
which are at distance 5.5a away.

V2 =
kq

5.5a
+

kq

5.5a
=

2kq

5.5a
(15)

V2
V1

=
1

5.5
= 0.45 (16)

If necessary, please come to office hours to clarify any of these problems.
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