PHYS 2B Quiz 1 Solutions

Aris

January 15, 2010

1 Problem 1

To find x_{0}, solve for

$$
\begin{equation*}
\frac{k(3 q)}{x_{0}^{2}}+\frac{k(-q)}{\left(x_{0}-a\right)^{2}}=0 \tag{1}
\end{equation*}
$$

The first term is the field due to the charge at the origin; the second due to the charge at distance a from the origin. Sum the two fields to get the net field, and set it to zero.

2 Problem 2

Immediately to the right of the negative charge, the field is very negative, because the influence of the negative charge is strongest at such small distances. As x increases away from the negative charge, the field due to the negative charge dies as $1 /\left(r^{2}\right)$ and the field due to the charge $3 q$ begins to dominate. At distance $2.4 a$, the fields exactly cancel out. The field will rise to a positive value as x increases further. It peaks then approaches zero as we take x to infinity. To find this peak,

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{k(3 q)}{x^{2}}+\frac{k(-q)}{(x-a)^{2}}\right)=0 \tag{2}
\end{equation*}
$$

We obtain $3(x-a)^{3}=x^{3}$. Going further, $3^{0.333}(x-a)=x$, from which we solve for $x=3.3 a$.

3 Problem 3

The charge configuration can be split into a point charge $2 q$, which has a field that dies as $1 / d^{2}$ (hence $\alpha=2$), and a dipole with dipole moment $q a$. The dipole has a field that dies as $1 / d^{3}$, hence $\beta=-2$. The minus sign in β is because the field of the dipole points to the left (because the negative charge is
nearer), while the field of the point charge points to the right. The 2 in β is a geometric factor that enters in the derivation of the field of a dipole. See the textbook for that derivation.

4 Problem 4

P_{2} is $2^{1 / 2} a$ away from the negative charge. This results in a field of total magnitude:

$$
\begin{equation*}
E=\frac{k q}{\left(2^{\frac{1}{2}} a\right)^{2}} \tag{3}
\end{equation*}
$$

When we resolve components in x and y, we multiply by $\cos 45$ or $\sin 45$. Both factors are $2^{-1 / 2}$. Hence, due to the negative charge only,

$$
\begin{gather*}
E_{x}=+\frac{k q}{\left(2^{\frac{1}{2}} a\right)^{2}} \cdot \frac{1}{2^{\frac{1}{2}}}=\frac{k q}{a^{2}} \cdot(0.4) \tag{4}\\
E_{y}=-\frac{k q}{\left(2^{\frac{1}{2}} a\right)^{2}} \cdot \frac{1}{2^{\frac{1}{2}}}=-\frac{k q}{a^{2}} \cdot(0.4) \tag{5}
\end{gather*}
$$

The plus and minus signs are because the field points towards the negative charge. The positive charge makes a contribution

$$
\begin{equation*}
E_{y}=+\frac{k q}{a^{2}} \cdot(3) \tag{6}
\end{equation*}
$$

Sum the E_{y} components due to both charges to get $\beta=2.6$.

5 Problem 5

Coloumb's law in its infinitesimal form is

$$
\begin{equation*}
d E=\frac{k(d q)}{r^{2}} \tag{7}
\end{equation*}
$$

where $d q=\lambda_{0} \frac{x}{L} d x$. At a point on the rod that is x distance away from the origin, $r^{2}=x^{2}+L^{2}$.

To find the total field, integrate this expression:

$$
\begin{equation*}
\int d E=\int_{0}^{L} d x \frac{k \lambda_{0} x}{L\left(x^{2}+L^{2}\right)} \cdot \frac{L}{\left(x^{2}+L^{2}\right)^{\frac{1}{2}}} \tag{8}
\end{equation*}
$$

The extra factor on the right is there because we are interested in the y component only. This integration has been done in lecture. Take a look.

6 Problem 6

At large distances away, the rod looks like a point charge with total charge

$$
\begin{equation*}
Q=\int_{0}^{L} d x \lambda_{0} \frac{x}{L}=\frac{\lambda_{0} L}{2} \tag{9}
\end{equation*}
$$

Apply Coulomb's law for a point charge $\mathrm{Q} . \beta=1 / 2$.

7 Problem 7

Consider the dotted line that runs from the center of the quadrupole to point P. We are considering the field on this dotted line. Our nearest two charges are a positive charge on the top of the dotted line and a negative charge below. Since field lines only go from positive charge to negative charge, we must conclude that the field points downwards.

Question: What happens when we apply Gauss's law to this configuration of no net charge? Does Gauss's law suggest that the field is zero? Think about it.

