Formulas:

$\sin 30^{\circ}=\cos 60^{\circ}=1 / 2, \quad \cos 30^{\circ}=\sin 60^{\circ}=\sqrt{3} / 2, \sin 45^{\circ}=\cos 45^{\circ}=\sqrt{2} / 2$
$F=k \frac{q_{1} q_{2}}{r^{2}}$ Coulomb's law $; k=9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \quad ; \quad \vec{F}_{12}=\frac{k q_{1} q_{2}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{3}}\left(\vec{r}_{2}-\vec{r}_{1}\right)$
Electric field due to charge q at distance $\mathrm{r}: \quad \vec{E}=\frac{k q}{r^{2}} \hat{r}$; Force on charge $\mathrm{Q}: \vec{F}=Q \vec{E}$
Electric field of_dipole, along dipole axis: $\quad E=\frac{2 k p}{x^{3}} \quad(\mathrm{p}=\mathrm{qd})$
Electric field of dipole, along direction perpendicular to dipole axis: $E=\frac{k p}{y^{3}}$
Energy of and torque on dipole in E-field: $U=-\vec{p} \cdot \vec{E}, \vec{\tau}=\vec{p} \times \vec{E}$
Linear, surface, volume charge density : $d q=\lambda d s \quad, \quad d q=\sigma d A \quad, d q=\rho d V$
Electric field of infinite: line of charge : $E=\frac{2 k \lambda}{r} ; \quad$ sheet of charge : $E=2 \pi k \sigma$

Solutions are in bold

There are 7 problems in this quiz, all are worth the same. Mark the answer closest to yours. This is Test Form a

Figure

For problems 1, 2, 3, 4

The charge $3 q$ is at the origin $(x, y)=(0,0)$, the charge $-q$ is at $(a, 0)$. Point P_{1} is at $(d, 0)$, point P_{2} is at $(0, a) . q>0$. Problems 1 to 4 refer to this figure.

Problem 1

A point on the x -axis where the electric field is 0 is $\left(\mathrm{x}_{0}, 0\right)$, with $\mathrm{x}_{0}=$
(a) 1.8 a ; (b) 2.4 a ; (c) 4 a ; (d) 2.8 a ; (e) -2 a

On the x axis, to the right of the charge $-q$, set $3 q / x^{2}=q /(x-a)^{2}$, solve for $x: x^{2}=3(x-$ $a)^{2}=\Rightarrow \quad x=\operatorname{sqrt}(3)(x-a)$, solve, gives $\left.x=\operatorname{sqrt}(3) /(\operatorname{sqrt}(3)-1)\right)$ times a

Problem 2

The point on the positive x-axis to the right of the charge $-q$ where the force on a positive test charge points to the right and its maximum is at
(a) 3.3 a
; (b) 3.5a
(c) 3.7 a ; (d) 3.9 a ; (e) 4.1a

E-field is $3 q / \mathbf{x}^{2}-q /(x-a)^{2}$, take derivative, set it $=0$ to locate maximum, solve for x. Equation is $6(x-a)^{3}=2 x^{3}=\Rightarrow \quad x=3^{1 / 3}(x-a)$, etc.

Problem 3
The electric field at point P_{1} (see figure) at a distance $\mathrm{d} \gg \mathrm{a}$ is approximately:
$E_{P_{1}}=\frac{k q \alpha}{d^{2}}+\frac{k q a \beta}{d^{3}}$
with
(a) $\alpha=2, \beta=2$;
(b) $\alpha=2, \beta=1$; (c)
(c) $\alpha=3, \beta=-2$;
; (d) $\alpha=3, \beta=-1$; (e)
$\alpha=2, \beta=-2$

Hint: use superposition
$1 / \mathbf{d}^{2}$ dependence comes from net charge, $1 / \mathbf{d}^{3}$ from dipole. At a large distance, this charge arrangement looks like a dipole ($\mathbf{q},-q$) with dipole moment $p=q d$ pointing in the negative x direction, plus a charge 2q. Use formulas for field of charge and field of dipole.

Problem 4
The electric field at point P_{2} (see figure) has components

$$
E_{x}=\frac{k q}{a^{2}} \alpha, \quad E_{y}=\frac{k q}{a^{2}} \beta
$$

with
(a) $\alpha=0.5, \beta=2.5$;
(b) $\alpha=1, \beta=2$
; (c) $\alpha=1.5, \beta=-2.5$;
(d) $\alpha=0.5, \beta=3 \quad$; (e) $\alpha=1, \beta=2.5$

Charge $3 q$ gives a positive y-component only, charge $-q$ gives a positive x component and a negative y-component that are equal in magnitude since the angle is 45 degrees. Add y-components from both contributions (with their sign).

Figure

A charged rod of length L on the x-axis has a nonuniform linear charge distribution $\lambda(x)=\lambda_{0} \frac{x}{L}$, where x is measured from the left end. At the point P shown in the figure, at distance L from the left end of the rod in the vertical direction, the electric field points approximately in the direction shown, and it's y-component, E_{y}, is positive. It can be calculated by doing an easy integral.

Problem 5

The magnitude of E_{y} shown in the figure is $\frac{\lambda_{0}}{L} \alpha$, with
(a) $\alpha=0.1$;
(b) $\alpha=0.2$; (c) $\alpha=0.3$
; (d) $\alpha=0.4 \quad$; (e) $\alpha=0.5$

It is like the integral discussed in class in connection with example 23-9 in the book, except that the charge density is x-dependent. That makes the integral a lot easier, since it involves $x /\left(x^{2}+L^{2}\right)^{3 / 2}$ and can be done simply by substitution.

Problem 6
At another point very far away from this rod, at distance $\mathrm{d} \gg \mathrm{L}$, the magnitude of the electric field is $E=\frac{\lambda_{0} L}{d^{2}} \beta$, with
(a) $\beta=0.25$;
(b) $\beta=0.5$; (c) $\beta=1$;
(d) $\beta=1.5$; (e) $\beta=2$

Far from the rod, the electric field is $\mathbf{k q} / \mathbf{d}^{\mathbf{2}}$ with q the total charge of the rod, which is obtained by integrating the linear charge density from 0 to L , giving $\lambda_{0} \mathrm{~L} / 2$.

Problem 7

The charges in the square arrangement in the figure with side a have all magnitude q , and their sign is shown. At the point P shown, very far away from this charge arrangement (at a distance d >> a), the electric field:
(a) points to the right ; (b) points to the left ; (c) points up ; (d) points down ; (e) is exactly zero

This can be seen as $\mathbf{2}$ dipoles, one pointing in the $+\mathbf{y}$ direction and the other in the -y direction, the latter one is a little further away (a further away). The first one gives an E-field pointing down, the second pointing up but a little smaller, so the net E-field points down.

