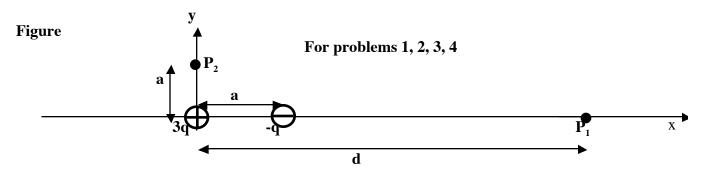
<u>Formulas</u>:

$\sin 30^{\circ} = \cos 60^{\circ} = 1/2, \ \cos 30^{\circ} = \sin 60^{\circ} = \sqrt{3}/2, \ \sin 45^{\circ} = \cos 45^{\circ} = \sqrt{2}/2$
$F = k \frac{q_1 q_2}{r^2} \text{Coulomb's law} ; \ k = 9 \times 10^9 \text{N} \cdot \text{m}^2/\text{C}^2 ; \vec{F}_{12} = \frac{k q_1 q_2}{ \vec{r}_2 - \vec{r}_1 ^3} (\vec{r}_2 - \vec{r}_1)$
Electric field due to charge q at distance r: $\vec{E} = \frac{kq}{r^2}\hat{r}$; Force on charge Q: $\vec{F} = Q\vec{E}$
Electric field of dipole, along dipole axis: $E = \frac{2kp}{x^3}$ (p=qd)
Electric field of dipole, along direction perpendicular to dipole axis: $E = \frac{kp}{v^3}$
Energy of and torque on dipole in E-field: $U = -\vec{p} \cdot \vec{E}$, $\vec{\tau} = \vec{p} \times \vec{E}$
Linear, surface, volume charge density : $dq = \lambda ds$, $dq = \sigma dA$, $dq = \rho dV$
Electric field of infinite: line of charge: $E = \frac{2k\lambda}{r}$; sheet of charge: $E = 2\pi k\sigma$
Solutions are in bold

<u>There are 7 problems in this quiz, all are worth the same. Mark the answer closest</u> to yours. This is Test Form **A**



The charge 3q is at the origin (x,y)=(0,0), the charge -q is at (a,0). Point P₁ is at (d,0), point P₂ is at (0,a). q > 0. Problems 1 to 4 refer to this figure.

Problem 1

A point on the x-axis where the electric field is 0 is $(x_0,0)$, with $x_0 =$ (a) 1.8a ; (b) 2.4a ; (c) 4a ; (d) 2.8a ; (e) -2a

On the x axis, to the right of the charge -q, set $3q/x^2=q/(x-a)^2$, solve for x: $x^2=3(x-a)^2 = x=sqrt(3)$ (x-a), solve, gives x=sqrt(3)/(sqrt(3)-1)) times a

Problem 2

The point on the positive x-axis to the right of the charge -q where the force on a positive test charge points to the right and its maximum is at (a) 3.3a; (b) 3.5a; (c) 3.7a; (d) 3.9a; (e) 4.1a

E-field is $3q/x^2$ - $q/(x-a)^2$, take derivative, set it =0 to locate maximum, solve for x. Equation is $6(x-a)^3=2x^3 \implies x=3^{1/3}(x-a)$, etc.

Problem 3

The electric field at point P_1 (see figure) at a distance d>>a is approximately:

 $E_{p_1} = \frac{kq\alpha}{d^2} + \frac{kq\alpha\beta}{d^3}$ with (a) $\alpha=2$, $\beta=2$; (b) $\alpha=2$, $\beta=1$; (c) $\alpha=3$, $\beta=-2$; (d) $\alpha=3$, $\beta=-1$; (e) $\alpha=2$, $\beta=-2$ Hint: use superposition

 $1/d^2$ dependence comes from net charge, $1/d^3$ from dipole. At a large distance, this charge arrangement looks like a dipole (q, -q) with dipole moment p=qd pointing in the negative x direction, plus a charge 2q. Use formulas for field of charge and field of dipole.

Problem 4

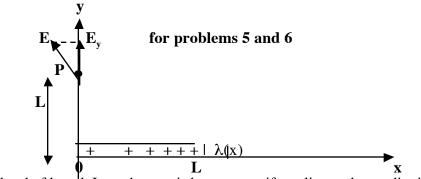
Figure

The electric field at point P_2 (see figure) has components

$$E_x = \frac{kq}{a^2}\alpha, \quad E_y = \frac{kq}{a^2}\beta$$

with
(a) $\alpha = 0.5, \beta = 2.5;$ (b) $\alpha = 1, \beta = 2;$ (c) $\alpha = 1.5, \beta = -2.5;$ (d) $\alpha = 0.5, \beta = 3;$ (e) $\alpha = 1, \beta = 2.5;$

Charge 3q gives a positive y-component only, charge -q gives a positive xcomponent and a negative y-component that are equal in magnitude since the angle is 45 degrees. Add y-components from both contributions (with their sign).



A charged rod of length L on the x-axis has a nonuniform linear charge distribution

 $\lambda(x) = \lambda_0 \frac{x}{L}$, where x is measured from the left end. At the point P shown in the figure, at distance L from the left end of the rod in the vertical direction, the electric field points approximately in the direction shown, and it's y-component, E_y , is positive. It can be calculated by doing an easy integral.

Problem 5

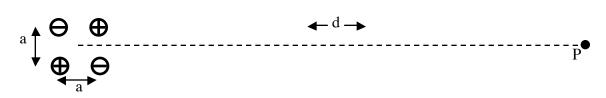
The magnitude of E_y shown in the figure is $\frac{\lambda_0}{L}\alpha$, with (a) α =0.1; (b) α =0.2; (c) α =0.3; (d) α =0.4; (e) α =0.5 It is like the integral discussed in class in connection with example 23-9 in the book, except that the charge density is x-dependent. That makes the integral a lot easier, since it involves $x/(x^2+L^2)^{3/2}$ and can be done simply by substitution.

Problem 6

At another point very far away from this rod, at distance d>>L, the magnitude of the electric field is $E = \frac{\lambda_0 L}{d^2} \beta$, with (a) β =0.25; (b) β =0.5; (c) β =1; (d) β =1.5; (e) β =2

Far from the rod, the electric field is kq/d^2 with q the total charge of the rod, which is obtained by integrating the linear charge density from 0 to L, giving $\lambda_0 L/2$.

Problem 7



The charges in the square arrangement in the figure with side a have all magnitude q, and their sign is shown. At the point P shown, very far away from this charge arrangement (at a distance $d \gg a$), the electric field:

(a) points to the right ; (b) points to the left ; (c) points up ; (d) points down ; (e) is exactly zero

This can be seen as 2 dipoles, one pointing in the + y direction and the other in the -y direction, the latter one is a little further away (a further away). The first one gives an E-field pointing down, the second pointing up but a little smaller, so the net E-field points down.