## chapter 33

## Problem

32. An $L C$ circuit includes a $20-\mu \mathrm{F}$ capacitor and has a period of 5.0 ms . The peak current is 25 mA . Find (a) the inductance and (b) the peak voltage.

## Solution

(a) The inductance can be calculated from Equation 33-11:
$L=1 \neq 0^{2} C=(T \nexists \pi)^{2} \notin=(5 \mathrm{msz} \pi)^{2} \neq 0 \mu \mathrm{~F}=31.7 \mathrm{mH}$.
(b) Fig. 33-12 and the expressions for the electric and magnetic energies for the $L C$ circuit in the text imply that $\frac{1}{2} C V_{p}^{2}=\frac{1}{2} L I_{p}^{2}$, so $V_{p}=I_{p} \sqrt{L E}=(25 \mathrm{~mA}) \sqrt{31.7 \mathrm{mHF} \mu \mathrm{F}}=995 \mathrm{mV}$.

## Problem

37. One-eighth of a cycle after the capacitor in an $L C$ circuit is fully charged, what are each of the following as fractions of their peak values: (a) capacitor charge, (b) energy in the capacitor, (c) inductor current, (d) energy in the inductor?

## Solution

The equations in Section 33-3 give the desired quantities, which we evaluate when
$\omega t=\omega(T \beta)=2 \pi 丹=\frac{1}{4} \pi=45^{\circ}$
(i.e., $\frac{1}{8}$ cycle). (Note that phase constant zero corresponds to a fully charged capacitor at $t=0$.) (a) From Equation 33-10, $q \boldsymbol{7}_{p}=\cos 45^{\circ}=1=\sqrt{2}$. (b) From the equation for electric energy,
$U_{E} \exists_{E, p}=\cos ^{2} 45^{\circ}=1 z$. (c) From Equation $33-12, H_{p}=-\sin 45^{\circ}=-1=\sqrt{2}$. (The direction of the current is away from the positive capacitor plate at $t=0$.) (d) From the equation for magnetic energy, $U_{B} U_{B, p}=\sin ^{2} 45^{\circ}=1 z$.

## Problem

38. Show from conservation of energy that the peak voltage and current in an $L C$ circuit are related by $I_{p}=V_{p} \sqrt{C \neq}$.

## Solution

When all the energy is stored in the capacitor, $U_{\text {tot }}=\frac{1}{2} C V_{p}^{2}$, and when all is stored in the inductor, $U_{\text {tot }}=\frac{1}{2} L I_{p}^{2}$. Therefore, $I_{p}=V_{p} \sqrt{C \neq}$. (See Figure 33-10, parts (a), (c), (e), and (g).)

## Problem

39. The $2000-\mu \mathrm{F}$ capacitor in Fig. 33-30 is initially charged to 200 V . (a) Describe how you would manipulate switches $A$ and $B$ to transfer all the energy from the $2000-\mu \mathrm{F}$ capacitor to the $500-\mu \mathrm{F}$ capacitor. Include the times you would throw the switches. (b) What will be the voltage across the $500-\mu \mathrm{F}$ capacitor once you've finished?

figure 33-30 Problem 39.

## Solution

(a) The energy initially stored in the first capacitor is $\frac{1}{2}(2 \mathrm{mF})(200 \mathrm{~V})^{2}=40 \mathrm{~J}$. First close switch $B$ for one
quarter of a period of the $L C$ circuit containing the $2000 \mu \mathrm{~F}$ capacitor, or
$\left.t_{B}=\frac{1}{4} T_{B}=\frac{1}{4}(2 \pi \neq)_{B}\right)=\frac{1}{2} \pi \sqrt{L C_{B}}=\frac{1}{2} \pi \sqrt{(100 \mathrm{H})(2 \mathrm{mF})}=702 \mathrm{~ms}$. This transfers 40 J to the inductor.
Then open switch $B$ and close switch $A$ for one
quarter of a period of the $L C$ circuit containing the $500 \mu \mathrm{~F}$ capacitor, or
$t_{A}=\frac{1}{2} \pi \sqrt{(100 \mathrm{H})(0.5 \mathrm{mF})}=\frac{1}{2} t_{B}=351 \mathrm{~ms}$.
This transfers 40 J to the second capacitor from the inductor. Finally, open switch $A$. (b) When the second capacitor
has 40 J of stored energy, its voltage is $\sqrt{2(40 \mathrm{~J}) \neq 0.5 \mathrm{mF})}=400 \mathrm{~V}$.

