Problem

12. The current in an inductor is changing at the rate of $100 \mathrm{~A} / \mathrm{s}$, and the inductor emf is 40 V . What is its self-inductance?

Solution

From Equation 32-5, $L=|\square \mathrm{E}=(d I=d t)|=40 \mathrm{~V}=(100 \mathrm{~A} / \mathrm{s})=0.4 \mathrm{H}$.

Problem

15. A cardboard tube measures 15 cm long by 2.2 cm in diameter. How many turns of wire must be wound on the full length of the tube to make a $5.8-\mathrm{mH}$ inductor?

Solution

From Equation 32-4, $N=\sqrt{L \ell=\square_{0} A}=\left[(5.8 \mathrm{mH})(15 \mathrm{~cm})=\left(4 \square \square 10^{\square 7} \mathrm{H} / \mathrm{m}\right) \square(1.1 \mathrm{~cm})^{2}\right]^{1=2}=1.35 \square 10^{3}$ turns.

Problem

16. The current in a $2.0-\mathrm{H}$ inductor is given by $I=3 t^{2}+15 t+8$, where t is in seconds and I in amperes. Find an expression for the magnitude of the inductor emf.

Solution

From Equation $32-5,|\mathbb{E}|=|\square L d I=d t|=2(6 t+15)$, where E is in volts and t is in seconds.

Problem

18. The current in a $40-\mathrm{mH}$ inductor is given by $I=I_{0} e^{\square b t}$, where $I_{0}=10 \mathrm{~A}$ and $b=20 \mathrm{~s}^{\square 1}$. What is the magnitude of the inductor emf at (a) $t=0$, (b) $t=25 \mathrm{~ms}$, and (c) $t=50 \mathrm{~ms}$?

Solution

The magnitude of the inductor emf is $|\mathbb{E}|=L|d I=d t|=L I_{0} b e^{\square b t}$, from Equation 32-5. (a) At $t=0$,
$|\mathrm{E}(0)|=(40 \mathrm{mH}) \square(10 \mathrm{~A})\left(20 \mathrm{~s}^{\square \mathrm{l}}\right)=8 \mathrm{~V}$, so (b) at $t=25 \mathrm{~ms},|\mathrm{E}(t)|=(8 \mathrm{~V}) e^{[0.5}=4.85 \mathrm{~V}$, and (c) $|E(50 \mathrm{~ms})|=2.94 \mathrm{~V}$.

Problem

21. The emf in a $50-\mathrm{mH}$ inductor is given by $\mathrm{E}=\mathrm{E}_{p} \sin \square t$, where $\mathrm{E}_{p}=75 \mathrm{~V}$ and $\square=140 \mathrm{~s}^{\square 1}$. What is the peak current in the inductor? (Assume the current swings symmetrically about zero.)

Solution

From Equation 32-5, $d I=d t=\square\left(\mathrm{E}_{p}=L\right) \sin \square t$, so integration yields $I(t)=\left(\mathrm{E}_{p}=\square L\right) \cos \square t$. (Since $I(t)$ is symmetric about $I=0$, the constant of integration is zero.) The peak current is

$$
I_{p}=\mathrm{E}_{p}=\square L=75 \mathrm{~V}=\left(140 \mathrm{~s}^{\square 1} \square 50 \mathrm{mH}\right)=10.7 \mathrm{~A} .
$$

Problem

4. Two coils have a mutual inductance of 580 mH . One coil is supplied with a current given by $I=3 t^{2} \square 2 t+4$, where I is in amperes and t in seconds. What is the induced emf in the other coil at time $t=2.5 \mathrm{~s}$?

Solution

Since $d I_{1}=d t=6 t \square 2$ (in A/s), Equation 32-2 gives, for
$t=2.5 \mathrm{~s}, \mathrm{E}_{2}=\square(580 \mathrm{mH})(6 \square 2.5 \square 2)(\mathrm{A} / \mathrm{s})=\square 7.54 \mathrm{~V}$ (see comment in solution to Problem 1).

Problem

8. Coils A and B have mutual inductance 25 mH . At time $t=0$ the current in coil A is zero. Subsequently a time-varying current is supplied to A, and the induced emf in coil B is given by $\mathrm{E}=50+0.2 t$, with E in V and t in ms. Find an expression for the time-varying current in coil A.

Solution

Equation 32-2 specifies $\mathrm{E}_{B}=\square M d I_{A}=d t$, so $d I_{A}=d t=\square[50 \mathrm{~V}+(0.2 \mathrm{~V} / \mathrm{ms}) t]=(25 \mathrm{mH})$. Integrating, and using $I_{A}(0)=0$, we find $I_{A}(t)=\square\left[(2 \mathrm{~A} / \mathrm{ms}) t+\left(4 \mathrm{~A} /(\mathrm{ms})^{2}\right) t^{2}\right]$. The direction of I_{A} depends on how the coils are coupled.

Problem

9. A rectangular loop of length ℓ and width w is located a distance a from a long, straight, wire, as shown in Fig. 32-20. What is the mutual inductance of this arrangement?

FIGURE 32-20 Problem 9.

Solution

When current I_{1} flows to the left in the wire, the flux through the loop is
$\square_{B, 2}=\left(\square_{0} I_{1}=2 \square\right) \square_{a}^{a+w} \ell d r \neq r=\left(\square_{0} I_{1} \ell=2 \square\right) \square \ln (1+w \overrightarrow{ })$ (see Example 31-2). Then Equation 32-1 gives $M=\square_{B, 2}=I_{1}=\left(\square_{0} \ell=2 \square\right) \ln (1+w=a)$. (In calculating the flux, the normal to the loop area was taken into the page, so the positive sense of circulation around the loop is CW . This determines the direction of the induced emf E_{2} in Equation 32-2.)

Problem

10. Two wire loops of radii a and b lie in the same plane and have a common center. Find the mutual inductance of this arrangement, assuming $b \mathrm{~A} a$. Hint: With $b \mathrm{~A} a$, the magnetic field will be essentially uniform over the smaller loop. See Example 30-1.

Solution

If $b \mathrm{~A} a$ is assumed, the magnetic field from the large loop is essentially uniform over the small loop, and equal to the value at the center of the large loop, $B_{b}=\square_{0} I_{b}=2 b$. Therefore, the flux through the small loop (due to current in the large loop) is $\square_{B, a}=B_{b} A_{a}=\left(\square_{0} I_{b}=2 b\right)\left(\square a^{2}\right)$, and the mutual inductance is $M=\square_{B, a}=I_{b}=\square_{0} \square a^{2}=2 b$. (Note: It would be more difficult to calculate $\square_{B, b}=I_{a}$, from the dipole field of the small loop, but the result for M would be the same.)

Problem

28. In a series $R L$ circuit like Fig. 32-8a, $\mathrm{E}_{0}=45 \mathrm{~V}, R=3.3 \mathrm{\square}$, and $L=2.1 \mathrm{H}$. If the current is 9.5 A , how long has the switch been closed?

Solution

As in the previous problem, $t=\square(L=R) \ln (1 \square I=I)$. Here, $I=\mathrm{E}_{0}=R=45 \mathrm{~V} 3.3 \square=13.6 \mathrm{~A}$, so $t=$ $\square(2.1 \mathrm{H}=3.3 \square) \ln (1 \square 9.5 \neq 3.6)=0.759 \mathrm{~s}$.

Problem

30. A series $R L$ circuit like Fig. 32-8a has $\mathrm{E}_{0}=60 \mathrm{~V}, R=22 \square$, and $L=1.5 \mathrm{H}$. Find the rate of change of the current
(a) immediately after the switch is closed and (b) 0.10 s later.

Solution

From Equations 32-5, and 7, $d I=d t=\left(\mathrm{E}_{0}=L\right) e^{\square R t \mathcal{L}}$. (a) For $t=0, d I=d t=\mathrm{E}_{0}=L=60 \mathrm{~V}=1.5 \mathrm{H}=40 \mathrm{~A} / \mathrm{s}$. (b) For $t=0.1 \mathrm{~s}, \quad d I=d t=(40 \mathrm{~A} / \mathrm{s}) e^{\square(22 \square)(0.1 \mathrm{~s})(1.5 \mathrm{H})}=9.23 \mathrm{~A} / \mathrm{s}$.

Problem

33. Resistor R_{2} in Fig. 32-22 is to limit the emf that develops when the switch is opened. What should be its value in order that the inductor emf not exceed 100 V ?

FIGURE 32-22 Problem 33.

Solution

As explained in Example 32-6, when the switch is opened (after having been closed a long time), the voltage across R_{2} (which equals the inductor emf) is $V_{2}=I_{2} R_{2}=\mathrm{E}_{0} R_{2}=R_{1}$. If we choose to limit this to no more than 100 V , then $R_{2} \square(100 \mathrm{~V})(180 \square)=45 \mathrm{~V}=400 \square$.

Problem

36. In Fig. 32-23, take $\mathrm{E}_{0}=12 \mathrm{~V}, R_{1}=4.0 \square, R_{2}=8.0 \square, R_{3}=2.0 \square$, and $L=2.0 \mathrm{H}$. What is the current I_{2}
(a) immediately after the switch is first closed and (b) a long time after the switch is closed? (c) After a long time the switch is again opened. Now what is I_{2} ?

FIGURE 32-23 Problem 36.

Solution

(a) As explained in Example 32-6, the inductor current is zero just after the switch is closed. At this instant, the currents can be determined from the circuit with the inductance open-circuited, so that its branch can be removed. Thus, $I_{3}=0$, and $I_{1}=I_{2}=\mathrm{E}=\left(R_{1}+R_{2}\right)=12 \mathrm{~V}=(4+8) \square=1 \mathrm{~A}$.

Problem 36 Solution (a)
(b) After the currents have been flowing a long time, they reach steady values $(d I=d t=0)$, and the voltage across the inductance is zero. The currents can be found by short-circuiting the inductance (see Example 32-6 again, and refer to
Chapter 28 if necessary):

$$
\begin{aligned}
I_{1} & =\frac{\mathrm{E}}{R_{1}+R_{2} R_{3} \neq\left(R_{2}+R_{3}\right)}=\frac{12 \mathrm{~A}}{4+8 \square 2 \mathrm{~F} 0}=2.14 \mathrm{~A} \\
I_{2} & =\frac{R_{3}}{R_{2}+R_{3}} I_{1}=\frac{1}{5} I_{1}=0.429 \mathrm{~A}, \text { and } \\
I_{3} & =I_{1} R_{2}=\left(R_{2}+R_{3}\right)=\frac{4}{5} I_{1}=1.71 \mathrm{~A} .
\end{aligned}
$$

Problem 36 Solution (b)
(c) When the switch is reopened, no current flows through the battery's branch, $I_{1}=0$, which can be removed from the circuit to calculate $I_{2}=I_{3}$ at this instant. The induced emf acts to keep the current flowing at its value in part (b) (as
explained in Example 32-6), so $I_{2}=\square I_{3}=\square 1.71 \mathrm{~A}$.

Problem 36 Solution (c)

Problem

37. In Fig. 32-24, take $\mathrm{E}_{0}=20 \mathrm{~V}, R_{1}=10 \square, R_{2}=5.0 \square$, and assume the switch has been open for a long time. (a) What is the inductor current immediately after the switch is closed? (b) What is the inductor current a long time after the switch is closed? (c) If after a long time the switch is again opened, what will be the voltage across R_{1} immediately afterward?

Solution

(a) If the switch has been open a long time, a steady current flows through the inductance $\left(d I_{L}=d t=0\right)$. When the switch is closed (at $t=0$), I_{L} cannot change instantaneously, so
$I_{L}(0)=\mathrm{E}=R_{1}=20 \mathrm{~V}=10 \square=2 \mathrm{~A}$. (Of course, $I_{1}(0)=I_{L}(0)$, and $I_{2}(0)=0$.) (b) After another long time $(t \square \quad)$, the currents are steady again and $\mathrm{E}_{L}=0$ (the inductance behaves like a short circuit). The resistors are in parallel; therefore $I_{L}(\quad)=\mathrm{E}\left(1 F R_{1}+1=R_{2}\right)=20 \mathrm{~V}\left(\frac{1}{5}+\frac{1}{10}\right) \square^{\square 1}=6 \mathrm{~A}$. (c) When the switch is again opened, the current through R_{2} is zero, but I_{L} cannot change instantly, so
$I_{L}=I_{1}=I_{L}(\quad)=6 \mathrm{~A}$. Thus, the voltage across R_{1} is $V_{1}=I_{1} R_{1}=(6 \mathrm{~A})(10 \square)=60 \mathrm{~V}$.

Problem

38. How much energy is stored in a $5.0-\mathrm{H}$ inductor carrying 35 A ?

Solution

Equation 32-10 gives $U=\frac{1}{2} L I^{2}=\frac{1}{2}(5 \mathrm{H})(35 \mathrm{~A})^{2}=3.06 \mathrm{~kJ}$.

Problem

43. The current in a $2.0-\mathrm{H}$ inductor is decreased linearly from 5.0 A to zero over 10 ms . (a) What is the average rate at which energy is being extracted from the inductor during this time? (b) Is the instantaneous rate constant?

Solution

(a) The energy falls from $U_{i}=\frac{1}{2} L I^{2}=\frac{1}{2}(2 \mathrm{H})(5 \mathrm{~A})^{2}=25 \mathrm{~J}$ to $U_{f}=0 \mathrm{in} \square t=10 \mathrm{~ms}$, so the rate of decrease is $\square U \nexists t=\square 25 \mathrm{~J}=10 \mathrm{~ms}=\square 2.5 \mathrm{~kW}$. (b) The discussion in the text leading to Equation 32-10 shows that the instantaneous power is $\mathrm{P}_{L}=L I(d I=d t)$, so even if $d I=d t$ is constant, I and P_{L} are not.

Problem

46. A 500 -turn solenoid is 23 cm long, 1.5 cm in diameter, and carries 65 mA . How much magnetic energy does it contain?

Solution

Combining Equations 32-4 and 10, we find $U=\frac{1}{2}\left(\square_{0} N^{2} A=\ell\right) I^{2}=\left(2 \square 10^{\square 7} \mathrm{H} / \mathrm{m}\right)\left(\frac{1}{2} \square \square 500 \square 1.5 \mathrm{~cm} \square\right.$
$65 \mathrm{~mA})^{2} \div(23 \mathrm{~cm})=0.510 \square \mathrm{~J}$.

