
chapter 24  Gauss’s law

Problem
32. Repeat Problem 26, assuming that Fig. 24-45 represents the cross section of a long, thick-walled pipe. Now the case

  a = 0  should be consistent with the result of Problem 31 for the interior of the rod.

Solution
Suppose that the pipe is long enough that the line symmetric result in Equation 24-8 can be used in Gauss’s law. Then

      E = qenclosed=2πε0rl.  For     a < r < b,  qenclosed = ρV = ρπ(r2 − a2)l,  so     E(r) = (ρ=2ε0)(r − a2=r).  For   a → 0,  the field
inside a uniformly charged solid rod in Problem 31(b) is recaptured.

Problem
66. The volume charge density inside a solid sphere of radius a is given by     ρ = ρ0r=a,  where   ρ0  is a constant. Find (a) the

total charge and (b) the electric field strength within the sphere, as a function of distance r from the center.

Solution
(a) The charge inside a sphere of radius r ≤ a  is   q(r) = ∫ 0

r ρ dV .  For volume elements, take concentric shells of radius r
and thickness dr, so   dV = 4π r2dr .  Then

    
q(r) = 4π ρr2 dr = 4π(ρ0=a) r 3 dr = πρ0r

4=a.
0

r

∫0

r

∫
For   r = a,  the total charge is   πρ0a

3.  (b) For spherical symmetry, Gauss’s law and Equation 24-5 give   4π r
2E(r) =

    q(r)=ε0 = πρ0r
4=ε0a,  or     E(r) = ρ0r

2=4ε0a.

Problem
72. An infinitely long nonconducting rod of radius R carries a volume charge density given by     ρ = ρ0(r=R),  where   ρ0  is a

constant. Find the electric field strength (a) inside and (b) outside the rod, as functions of the distance r from the rod
axis.

Solution
Line symmetry, Equation 24-8, and Gauss’s law give a field strength of     E = λenclosed=2πε0r,  where   λenclosed = ∫ 0

r ρ dV  is
the charge within a unit length of coaxial cylindrical surface of radius r, and   dV = 2π r dr  is the volume element for a unit
length of thin shell with this surface. (a) For r < R  (inside rod),     λenclosed = ∫ 0

r (2πρ0=R)r2 dr = 2πρ0r
3=3R,  hence

    E = ρ0r
2=3ε0R.  (b) For r > R  (outside rod),     λenclosed = ∫ 0

R(2πρ0=R)r 2dr = 2πρ0R
2=3 , hence     E = ρ0R

2=3ε0r.

CHAPTER 25  ELECTRIC POTENTIAL

Problem
6. A charge of   3.1 C  moves from the positive to the negative terminal of a 9.0-V battery. How much energy does the

battery impart to the charge?

Solution
  ΔUAB = q ΔVAB = (3.1 C)(9.0 V) = 27.9 J.
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Problem
8. Figure 25-37 shows a uniform electric field of magnitude E. Find expressions for (a) the potential difference ΔVAB  and

(b)   ΔVBC .  (c) Use your result to determine   ΔVAC .

FIGURE 25-37 Problem 8.

Solution
(a) On the line A to B,     dl  is antiparallel to     E,  so Equation 25-2 gives         VB − VA = − ∫A

B E ⋅dl = E ∫A
B dl = Ed .  (b) The line

B to C makes an angle of 45° with E, so       VC − VB = −E ∫B
C cos 45° dl = −Ed= 2.  (c) Addition yields VC − VA =

    VC − VB + VB − VA = Ed (1 − 1= 2) = 0.293Ed .

Problem
12. Electrons in a TV tube are accelerated from rest through a 25-kV potential difference. With what speed do they hit the

TV screen?

Solution
The work done on an electron equals the change in its kinetic energy,     W = e ΔV = 1

2 mv2 (if it starts from rest). Thus,

    
v = 2e ΔV=m =

2(1.6 × 10−19 C)(25 × 103  V)
(9.11 × 10−31 kg)

= 9.37 × 107  m/s.

Problem
15. Two large, flat metal plates are a distance d apart, where d is small compared with the plate size. If the plates carry

surface charge densities   ±σ ,  show that the potential difference between them is     V = σ d=ε0 .

Solution
The electric field between the plates is uniform, with     E = σ=ε0 ,  directed from the positive to the negative plate (see last
paragraph of Section 24-6 and Fig. 24-35). Then Equation 25-2b gives     V = V+ − V− = −(σ=ε0)(−d ) = σ d=ε0  (the
displacement from the negative to the positive plate is opposite to the field direction).

Problem
16. An electron passes point A moving at   6.5 Mm/s.  At point B the electron has come to a complete stop. Find the

potential difference   ΔVAB .

Solution
The work-energy theorem (for an electron under the influence of just an electric force) gives   WAB = −q  ΔVAB = ΔK =   −KA,
where WAB  is the work done by the electric field (also equal to   −ΔUAB),  and KB = 0.  Thus,
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ΔVAB =

KA
q

=
mevA2

2(−e)
=

(9.11 × 10−31 kg)(6.5 × 106  m/s)2

2(−1.6 × 10−1 9  C)
= −120 V.

(To stop an electron, a negative potential difference must be applied.)

Problem
19. The classical picture of the hydrogen atom has a single electron in orbit a distance   0.0529 nm  from the proton.

Calculate the electric potential associated with the proton’s electric field at this distance.

Solution
The potential of the proton, at the position of the electron (both of which may be regarded as point-charge atomic
constituents) is (Equation 25-4)     V = ke=a0,  where   a0  is the Bohr radius. Numerically,   V = (9 × 109  N ⋅ m2/C2) ×

    (1.6 × 10−19 C)=(5.29 × 10−1 1 m) = 27.2 V.  (The energy of an electron in a classical, circular orbit, around a stationary
proton, is one half its potential energy, or   

1
2 U = 1

2 (−e)V = −13.6 eV.  The excellent agreement with the ionization energy
of hydrogen was one of the successes of the Bohr model.)

Problem
21. Points A and B lie   20 cm  apart on a line extending radially from a point charge Q, and the potentials at these points are

  VA = 280 V,  VB = 130 V.  Find Q and the distance r between A and the charge.

Solution
Since     VA = kQ=rA and VB = kQ=rB,  division yields     rB = (VA=VB )rA = (280=130)rA = 2.15rA. But rB − rA = 20 cm,  so

    rA = (20 cm)(2.15 − 1)−1 = 17.3 cm. Then Q = VArA=k = (280 V)(17.3 cm)=(9 × 109  N ⋅ m2/C2) = 5.39 nC.

Problem
22. What is the maximum potential allowable on a 5.0-cm-diameter metal sphere if the electric field at the sphere’s surface is

not to exceed the   3 MV/m  breakdown field in air?

Solution
For an isolated metal sphere, the potential at the surface is     V = kQ=R,  while the electric field strength at the surface is

    kQ=R2 = V=R.  Thus,     V=R ≤ 3 MV/m implies V ≤ (3 MV/m)( 1
2 × 0.05 m) = 75 kV.

    −e (V∞ − Vsurf ) = eVsurf = 1
2 mv2 . Then v = 2eVsurf=m = [2(1.6 × 10−19 C)(442 kV)=(1.67 × 10−27  kg)]1=2 =    9.21 Mm/s.

Problem
24. A sphere of radius R carries a negative charge of magnitude Q, distributed in a spherically symmetric way. Find the

“escape speed” for a proton at the sphere’s surface—that is, the speed that would enable the proton to escape to arbitrarily
large distances.

Solution
The work done by the electric field, when a proton escapes from the surface to an infinite distance, equals the change in
kinetic energy, or     −e (V∞ − Vsurf ) = eVsurf = K∞ − Ksurf = − 1

2 mv2.  (We assumed zero kinetic energy for the proton at

infinity, and that the sphere is stationary.) For a uniformly negatively charged sphere,     Vsurf = −kQ=R,  so     v = 2keQ=mR.
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Problem
25. A thin spherical shell of charge has radius R and total charge Q distributed uniformly over its surface. What is the

potential at its center?

Solution
The potential at the surface of the shell is   kQ=R  (as in Example 25-3). The electric field inside a uniformly charged shell is
zero, so the potential anywhere inside is a constant, equal, therefore, to its value at the surface.

Problem
26. A solid sphere of radius R carries a net charge Q distributed uniformly throughout its volume. Find the potential

difference from the sphere’s surface to its center. Hint: Consult Example 24-1.

Solution
The electric field inside a uniformly charged sphere is radially symmetric with strength     E = kQr=R3. Then V(R) − V(0) =

    −∫0
R(kQr=R3 )dr = −kQ=2R.  (The potential is higher at the center if Q is positive.)

Problem
27. Find the potential as a function of position in an electric field given by     E = ax î,  where a is a constant and where

  V = 0 at x = 0.

Solution
Since     V(0) = 0,  V(r) = −∫0

r E ⋅ dr = −∫0
r ax î ⋅ dr = −∫0

x ax  dx = − 1
2 ax

2.

Problem
29. The potential difference between the surface of a 3.0-cm-diameter power line and a point   1.0 m  distant is   3.9 kV.  What

is the line charge density on the power line?

Solution
If we approximate the potential from the line by that from an infinitely long charged wire, Equation 25-5 can be used to find

      λ:λ = 2π ε0 ΔVAB=ln(rA=rB ) = (3.9 kV)[2(9 × 109  N ⋅ m 2/C2) ln(100=1.5)]−1 = 51.6 nC/m. (Note:  ΔVAB = VB −VA  so B is
at the surface of the wire and A is   100 cm  distant.)

Problem
30. Three equal charges q form an equilateral triangle of side a. Find the potential at the center of the triangle.

Solution
The center is equidistant from each vertex, and     r = a=2cos 30° = a= 3.  Each charge contributes equally to the potential, so

    V = 3kq=r = 3 3kq=a.
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Problem 30 Solution.

Problem
32. Two identical charges q lie on the x-axis at   ±a .  (a) Find an expression for the potential at all points in the x-y plane.

(b) Show that your result reduces to the potential of a point charge for distances large compared with a.

Solution
(a) Equation 25-6 and some geometry give         V(r) = Σkqi=ri = kq[ r − aî −1

+ r + aî −1] = kq{[( x − a )2 + y2 ]−1=2 +

    [(x + a)2 + y2 ]−1=2}.  (b) If       r
2 = x 2 + y2 À a,  a can be neglected relative to x or y, so     V(r ) → 2kq=r ,  which is the

potential of a point charge of magnitude 2q.

Problem
37. A thin ring of radius R carries a charge 3Q distributed uniformly over three-fourths of its circumference, and −Q  over

the rest. What is the potential at the center of the ring?

Solution
The result in Example 25-6 did not depend on the ring being uniformly charged. For a point on the axis of the ring, the
geometrical factors are the same, and   ∫ring dq = Qtot  for any arbitrary charge distribution, so     V = kQtot (x

2 + a2 )−1=2  still
holds. Thus, at the center   (x = 0)  of a ring of total charge   Qtot = 3Q − Q = 2Q,  and radius   a = R,  the potential is
    V = 2kQ=R .

Problem
39. The annulus shown in Fig. 25-40 carries a uniform surface charge density   σ .  Find an expression for the potential at an

arbitrary point P on its axis.

FIGURE 25-40 Problem 39.

Solution
The annulus can be considered to be composed of thin rings of radius   r (a ≤ r ≤ b)  and charge   dq = 2πσ r dr  (see
Example 25-7 and Fig.’s 25-15 and 16). The element of potential from a ring on its axis, a distance x from the center, is

    dV = k dq= x2 + r2  (see Example 25-6) so the potential from the whole annulus is:

  
V = dV = 2πσ k∫   

r dr

x2 + r2a

b

∫ = 2π kσ x2 + r2

a

b
= 2πkσ x2 + b2 − x2 + a2 

 
 
 .

(Note: This reduces to the potential on the axis of a uniformly charged disk if   a → 0.)
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Problem
41. (a) Find the potential as a function of position in the electric field       E = E0(î + ˆ j ), where E0 = 150 V/m.  Take the zero

of potential at the origin. (b) Find the potential difference from the point   x = 2.0 m,  y = 1.0 m  to the point
  x = 3.5 m,    y = −1.5  m.

Solution
(a) Equation 25-2b gives the potential for a uniform field. Take the zero of potential at the origin (point A in
Equation 25-2b) and let       l = r = xî + yˆ j + z ˆ k  be the vector from the origin to the field point (point B in Equation 25-2b).
Then       ΔVAB = VB − VA = V (r) − 0 = V( x,  y) = −E0 (î + ˆ j ) ⋅ r = −E 0(x + y).  (The potential is independent of z, so we
wrote     V(r) = V(x,  y).)  (b)   V(3.5 m, −1.5 m) − V(2.0 m,  1.0 m) = −(150 V/m)(3.5 m − 1.5 m − 2.0 m − 1.0 m) = 150 V.

Problem
46. Sketch some equipotentials and field lines for a distribution consisting of two equal point charges.

Problem 46 Solution.

Solution
The equipotential surfaces for two equal point charges, q, located on the x-axis at   ±a ,  are given by

  

4πε0
q

 

 
 

 

 
  V(x, y, z) =

1

(x − a)2 + y2 + z 2
+

1

(x + a)2 + y2 + z2
= constant

Lines of force are perpendicular to the equipotentials at every point. We sketched the field in the x-y plane, without adhering
to any consistent numerical mapping convention, but in sufficient detail to display its general shape, in the vicinity of the
charges. Standard calculus techniques and a personal computer help in preparing such pictures. A three-dimensional plot, as
in Fig. 25-14, has also been included; caveat—the lines on the three-dimensional plot are not equipotentials.

Problem
49. Use the result of Example 25-6 to determine the on-axis field of a charged ring, and verify that your answer agrees with

the result of Example 23-8.
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Solution
On the axis of a uniformly charged ring (the x-axis),     V = kQ= x2 + a2  (Equation 25-9), and the electric field only has
an x component (by symmetry). Then         E = (−dV=dx)î = kQx (x2 + a2 )−3=2 î ,  in accord with Example 23-8. (In general, one
needs to know the potential in a 3-dimensional region in order to calculate the field from its partial derivatives.)

Problem
52. (a) What is the maximum potential (measured from infinity) for the sphere of Example 25-3 before dielectric breakdown

of air occurs at the sphere’s surface? (Breakdown of air occurs at a field strength of   3 MV/m.)  (b) What is the charge on
the sphere when it’s at this potential?

Solution
(b) Dielectric breakdown in the air occurs if the field at the surface,     E = σ=ε0 ,  exceeds   3 × 106  V/m.  Therefore, the
charge (for a uniformly charged sphere) must not be greater than   q = 4πR2σ = 4πε0ER

2 = (3 × 106  V/m)(2.3 m)2 ÷

  (9 × 109  N ⋅ m2/C2) = 1.76 mC. (a) From Equation 25-11,     V = kq=R = RE = 6.9 MV.

Problem
54. A large metal sphere has three times the diameter of a smaller sphere and carries three times as much charge. Both

spheres are isolated, so their surface charge densities are uniform. Compare (a) the potentials and (b) the electric field
strengths at their surfaces.

Solution
(a) The potential of an isolated metal sphere, with charge Q and radius R, is     kQ=R,  so a sphere with charge 3Q and radius 3R
has the same potential. (b) However, the electric field at the surface of the smaller sphere is     σ=ε0 = kQ=R2,  so tripling Q
and R reduces the surface field by a factor of   

1
3 .

Problem
55. Two metal spheres each   1.0 cm  in radius are far apart. One sphere carries   38 nC  of charge, the other   −10 nC.  (a) What

is the potential on each? (b) If the spheres are connected by a thin wire, what will be the potential on each once
equilibrium is reached? (c) How much charge must move between the spheres in order to achieve equilibrium?

Solution
(a) Since the spheres are far apart (approximately isolated), we can use Equation 25-11 to find their potentials:

    V1 = kQ1=R1 = (9 GN ⋅ m2/C2)(38 nC)=(1 cm) = 34.2 kV and V2 = kQ2=R2 = −9 kV.  (b) When connected by a thin wire, the
spheres reach electrostatic equilibrium with the same potential, so     V = k ′ Q 1=R1 = k ′ Q 2=R2.  Since the radii are equal, so must
be the charges,   ′ Q 1 = ′ Q 2.  The total charge is   38 nC − 10 nC = 28 nC = ′ Q 1 + ′ Q 2 = 2 ′ Q 1  (if we assume that the wire is so
thin that it has a negligible charge), so     ′ Q 1 = ′ Q 2 = 14 nC. Then ′ V = k(14 nC)=(1 cm) = 12.6 kV.  (c) In this process, the
first sphere loses   38 − 14 = 24 nC  to the second.


