Answers to Even Numbered Conceptual Questions

- **2.** Ceilings are generally painted a light color so they will reflect more light, making the room brighter. Textured materials are often used on the ceiling to diffuse the reflected light and reduce glare (specular reflections).
- 14. Total internal reflection occurs only when light attempts to move from a medium of high index of refraction to a medium of lower index of refraction. Thus, light moving from air (n = 1) to water (n = 1.33) cannot undergo total internal reflection.

Problem Solutions

22.1 The total distance the light travels is

$$\Delta d = 2 \left(D_{\text{center to}} - R_{\text{Earth}} - R_{\text{M con}} \right)$$

$$= 2(3.84 \times 10^8 - 6.38 \times 10^6 - 1.76 \times 10^6) \text{ m} = 7.52 \times 10^8 \text{ m}$$

Therefore,
$$v = \frac{\Delta d}{\Delta t} = \frac{7.52 \times 10^8 \text{ m}}{2.51 \text{ s}} = \boxed{3.00 \times 10^8 \text{ m/s}}$$

$$22.7 \qquad n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\sin\theta_1 = 1.333 \sin 45.0^\circ$$

$$\sin \theta_1 = (1.333)(0.707) = 0.943$$

 $\theta_1 = 70.5^\circ \rightarrow 19.5^\circ$ above the horizontal

22.11 (a)
$$\lambda_{w \text{ atter}} = \frac{\lambda_0}{n_{w \text{ atter}}}$$
, so $\lambda_0 = n_{w \text{ atter}} \lambda_{w \text{ atter}} = (1.333)(438 \text{ nm}) = 584 \text{ nm}$

(b)
$$\lambda_0 = n_{w \text{ ater}} \lambda_{w \text{ ater}} = n_{benzene} \lambda_{benzene}$$

and
$$\frac{n_{\text{benzene}}}{n_{\text{w atter}}} = \frac{\lambda_{\text{w atter}}}{\lambda_{\text{benzene}}} = \frac{438 \text{ nm}}{390 \text{ nm}} = \boxed{1.12}$$

22.16 The angle of incidence is

$$\theta_{1} = \tan^{-1} \left[\frac{2.00 \text{ m}}{4.00 \text{ m}} \right] = 26.6^{\circ}$$

Therefore, Snell's law gives

$$\theta_{2} = \sin^{-1} \left[\frac{n_{1} \sin \theta_{1}}{n_{2}} \right]$$
$$= \sin^{-1} \left[\frac{(1.333) \sin 26.6^{\circ}}{1.00} \right] = 36.6^{\circ}$$

and the angle the refracted ray makes with the surface is

22.19 The angle of refraction at the first surface is $\theta_2 = 195^\circ$ (see Problem 18). Let *h* represent the distance from point *a* to *c* (that is, the hypotenuse of triangle *abc*). Then,

$$h = \frac{2.00 \text{ cm}}{\cos \theta_2} = \frac{2.00 \text{ cm}}{\cos 19.5^\circ} = 2.12 \text{ cm}$$

Also, $\alpha=\theta_{\scriptscriptstyle 1}-\theta_{\scriptscriptstyle 2}=30.0^\circ-19.5^\circ=10.5^\circ$, so

$$d = h \sin \alpha = (2.12 \text{ cm}) \sin 10.5^{\circ} = 0.388 \text{ cm}$$

22.29 Using Snell's law gives

$$\theta_{red} = \sin^{-1} \left(\frac{n_{air} \sin \theta_i}{n_{red}} \right) = \sin^{-1} \left(\frac{(1.000) \sin 83.00^\circ}{1.331} \right) = \boxed{48.22^\circ}$$

and $\theta_{ble} = \sin^{-1} \left(\frac{n_{air} \sin \theta_i}{n_{ble}} \right) = \sin^{-1} \left(\frac{(1.000) \sin 83.00^\circ}{1.340} \right) = \boxed{47.79^\circ}$

22.32 For the violet light, $n_{qlass} = 1.66$, and

$$\alpha$$
 = 90° – $\theta_{\rm lr}$ = 62.5° , β = 180.0° – 60.0° – α = 57.5°

and $\theta_{2i} = 90.0^{\circ} - \beta = 32.5^{\circ}$. The final angle of refraction of the violet light is

$$\theta_{2r} = \sin^{-1} \left(\frac{n_{glass} \sin \theta_{2i}}{n_{air}} \right) = \sin^{-1} \left(\frac{1.66 \sin 32.5^{\circ}}{1.00} \right) = 63.2^{\circ}$$

Following the same steps for the red light $(n_{glass} = 1.62)$ gives

$$\theta_{
m lr}$$
 = 28.2° , α = 61.8° , β = 58.2° , $\theta_{
m 2i}$ = 31.8° , and $\theta_{
m 2r}$ = 58.6°

Thus, the angular dispersion of the emerging light is

D ispersion =
$$\theta_{2r}|_{violet} - \theta_{2r}|_{red} = 63.2^{\circ} - 58.6^{\circ} = 4.6^{\circ}$$

22.37 When light attempts to cross a boundary from one medium of refractive index n_1 into a new medium of refractive index $n_2 < n_1$, total internal reflection will occur if the angle of incidence exceeds the critical angle given by $\theta_c = \sin^{-1}(n_2/n_1)$.

(a) If
$$n_1 = 1.53$$
 and $n_2 = n_{air} = 1.00$, then $\theta_c = \sin^{-1}\left(\frac{1.00}{1.53}\right) = 40.8^{\circ}$

(b) If
$$n_1 = 1.53$$
 and $n_2 = n_{water} = 1.333$, then $\theta_c = \sin^{-1}\left(\frac{1.333}{1.53}\right) = 60.6^{\circ}$

22.40 The circular raft must cover the area of the surface through which light from the diamond could emerge. Thus, it must form the base of a cone (with apex at the diamond) whose half angle is θ , where θ is greater than or equal to the critical angle.

The critical angle at the water-air boundary is

$$\theta_c = \sin^{-1} \left(\frac{n_{air}}{n_{w air}} \right) = \sin^{-1} \left(\frac{1.00}{1.333} \right) = 48.6^{\circ}$$

Thus, the minimum diameter of the raft is

$$2r_{min} = 2h \tan \theta_{min} = 2h \tan \theta_c = 2(2.00 \text{ m}) \tan 48.6^\circ = 4.54 \text{ m}$$