Chapter 21

21.47 The distance between adjacent antinodes in a standing wave is $\lambda / 2$

Thus, $\lambda=2(6.00 \mathrm{~cm})=12.0 \mathrm{~cm}=0.120 \mathrm{~m}$, and

$$
c=\lambda f=(0.120 \mathrm{~m})\left(2.45 \times 10^{9} \mathrm{~Hz}\right)=2.94 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

21.51 (a) For the AM band,

$$
\begin{aligned}
& \lambda_{\text {m in }}=\frac{c}{f_{\text {max }}}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1600 \times 10^{3} \mathrm{~Hz}}=188 \mathrm{~m} \\
& \lambda_{\text {max }}=\frac{c}{f_{\text {m in }}}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{540 \times 10^{3} \mathrm{~Hz}}=556 \mathrm{~m}
\end{aligned}
$$

(b) For the FM band,

$$
\begin{aligned}
& \lambda_{\text {m in }}=\frac{c}{f_{\text {max }}}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{108 \times 10^{6} \mathrm{~Hz}}=2.78 \mathrm{~m} \\
& \lambda_{\text {max }}=\frac{c}{f_{\text {m in }}}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{88 \times 10^{6} \mathrm{~Hz}}=3 . \mathrm{m}
\end{aligned}
$$

