9.1 Atomic Physics. II

Quantum numbers
Pauli Exclusion Principle
Periodic Table
Characteristic x-rays

Electrons in atoms.

Electrons in atoms exist in discrete energy levels which can be calculated by solving a wave equation. This calculation is beyond the scope of this course.

However, the pattern of energy levels which results from a quantum mechanical rule called the Pauli Exclusion
Principle. is responsible for the periodicity in the chemical properties of the different elements as seen in the Periodic Table

Orbital magnetic quantum number

Classically an electron moving in a circle is a current which results in a magnetic dipole.
Classically, the dipole can have any orientation with respect to a field.
In quantum mechanics, only discrete orientations are allowed. The orientation are determined by the orbital magnetic quantum no. m_{1}
The value of m_{1} ranges from $-\ell$ to $+\ell$.
i.e. for $\ell=1, m_{\perp}$ can have values of $-1,0$, and 1 .

Orbital angular momentum

Classically the angular momentum L of an electron moving in a circle can have any value

In quantum mechanics the
 values of the angular momentum are quantized and specified by a orbital angular momentum quantum no. ℓ

For an electron with a principle quantum no. n the value of ℓ ranges from 0 to $n-1$.
i.e. for $n=2, \ell$ can have values of 0 and 1 .

Spin magnetic quantum number

In quantum mechanics an electron has an intrinsic magnetic moment due to spin. The magnetic moment can have two orientations in a magnetic field determined by a spin quantum number m_{s}

$$
m_{s}=+1 / 2 \text { or }-1 / 2
$$

for an electron 2 spin states are possible $\pm 1 / 2$

Atomic energy levels and quantum numbers.	
principle quantum number n	range of values 1, 2, 3,
angular momentum quantum number ℓ	0,1 to n-1
orbital magnetic quantum number m_{ℓ}	$-\ell, .$. o... $+\ell$
spin magnetic quantum number m_{s}	$-\frac{1}{2}$, or $+\frac{1}{2}$
The state of an electron is specified by the set of its quantum numbers ($\mathrm{n}, \ell, \mathrm{m}_{1}, \mathrm{~m}_{\mathrm{s}}$)	
The number of states is determined by the set of possible quantum numbers.	

Pauli Exclusion Principle

No two electrons in an atom can have the same quantum number, n, I, m_{1}, or m_{s}
To form an atom with many electrons the electrons go into the lowest energy unoccupied state.

The periodic properties of the elements as shown in the Periodic Table can be explained by the Pauli Exclusion Principle by properties of filled shells.

Electrons in atoms- Shell Notation

TABLE 28.1			
Shell and Subshell			
Shell			
n	Symbol	ℓ	Subshell
1	K	0	s
2	L	1	p
3	M	2	d
4	N	3	f
5	O	4	g
6	P	5	h
\cdots		\cdots	

TABLE 28.3			
Number of Electrons in Filled Subshells and Shells			
	$\begin{array}{c}\text { Number of } \\ \text { Electrons in } \\ \text { Filled Subshell }\end{array}$	$\begin{array}{c}\text { Number of } \\ \text { Electrons in } \\ \text { Filled Shell }\end{array}$	
$\mathrm{K}(n=1)$	$s(\ell=0)$	2	2
$\mathrm{~L}(n=2)$	$s(\ell=0)$	2	
	$p(\ell=1)$	6	
$\mathrm{M}(n=3)$	$s(\ell=0)$	2	
	$p(\ell=1)$	6	
	$d(\ell=2)$	10	

Characteristic X-rays are due to emission from heavy atoms excited by electrons

	28.4	oble table	gas	have fill ult to io		$\begin{aligned} & \text { shells } \\ & ->A^{+} \end{aligned}$			
Electronic Configurations of Some Elements									
z	Symbol	${ }_{\text {Coroum }}$	IState	Lonization Energy (eV)	z	Symbol	Coret	und-State figuration	Ionization Energy (eV)
1	H		15^{1}	13595	19	K	[Ar]	$4{ }^{1}$	4.339
2	He		$1{ }^{2}$	24581	20	\cdots		$4{ }^{2}$	6.111
					21	*		$34{ }^{2}$	6.54
3	$\mathrm{Li}^{\text {i }}$	[He]	$2{ }^{1}$	5380	${ }^{2}$	π		$34_{4} 3^{2}$	6.88
4	Be		$2{ }^{2}$	9332	23	v		$33^{4} 6^{2}$	674
s	B		$22^{3} 2 p^{\prime}$	8896	24	Cr		$3{ }^{3} 44^{1}$	6.96
6	c		$2 x^{2} p^{2}$	11.256	25	Mn		$33^{3} 44^{2}$	7439
7	N		$2 x^{3} 2 p^{3}$	1458	25	Fe		अ4\% ${ }^{2}$	787
8	o		$2 x^{3} 2 p^{4}$	13.64	27	Co_{0}		$3 M^{4} 4^{2}$	786
9	F		2, ${ }^{\text {a }}$	17.418	28	Ni		M"4 ${ }^{2}$	7.638
10	Ne		$2 x^{23} p^{\circ}$	21.50	\%	Cu		33^{101454}	7.724
					30	\%n		$34^{104} 40^{2}$	9.93
${ }^{11}$	Na	(Ne]	$3{ }^{1}$	5.158	31	6			6.00
12	Mg		$3{ }^{2}$	7.64	32	Ge			788
13	${ }^{\text {a }}$		$3{ }^{2} 3 \mathrm{P}^{\prime}$	5.984	35	As			981
14	5		$33^{2} 3 p^{2}$	8.19	34	Se		$34^{4 \prime 4} 4^{2}+p^{4}$	9.75
is	P		$3^{3} 3 \mathrm{p}^{3}$	10.484	35	Rr		$44^{124} 42^{4} 4 p^{3}$	1184
16	5		$3^{3} 3 \mathrm{~m}^{\prime}$	10.357	36	$\mathrm{Kr}^{\text {r }}$		$3 M^{\prime \prime} 44^{2} 4 p^{\prime \prime}$	13.996
17	1		4, 3 \% ${ }^{\text {a }}$	13.01					
18	${ }^{\text {a }}$		$33^{23} p^{*}$	15.753					
Filled subshell configuration $\mathrm{s}^{2}, \mathrm{p}^{6}, \mathrm{~d}^{10}$									

X-ray emission

Calculate the wavelength for $\mathrm{K}_{\alpha} \mathrm{x}$-ray emission of Mo $(Z=+42)$. The electron in the L shell must come from a $\mathrm{l}=1$ (p) state.

$$
\begin{aligned}
L \text { shell } & Z_{\text {eff }}=Z-3 \\
K \text { shell } & Z_{\text {eff }}=Z-1 \\
E_{\text {(Lshell) }} & =-13.6(Z-3)^{2}\left(\frac{1}{2^{2}}\right) \\
E_{\text {Kshell }} & =-13.6(Z-1)^{2}\left(\frac{1}{1^{2}}\right)
\end{aligned}
$$

$\Delta E=13.6(41)^{2}\left[\frac{1}{1}\right]-13.6(39)^{2}\left[\frac{1}{4}\right]=1.77 \times 10^{4} \mathrm{eV}$
$\Delta \mathrm{E}=\mathrm{hf}=\frac{\mathrm{hc}}{\lambda}$
$\lambda=\frac{\mathrm{hc}}{\Delta \mathrm{E}}=\frac{\left(6.63 \times 10^{-34} \mathrm{~J}\right)\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{\left(1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}\right)\left(1.77 \times 10^{4} \mathrm{eV}\right)}=7.0 \times 10^{-11} \mathrm{~m}$

