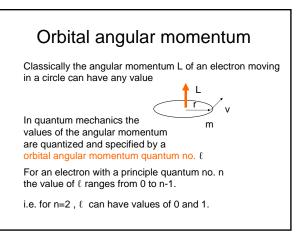
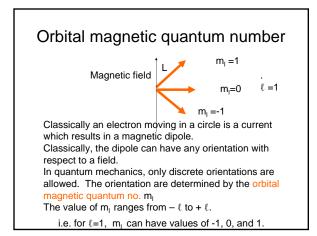
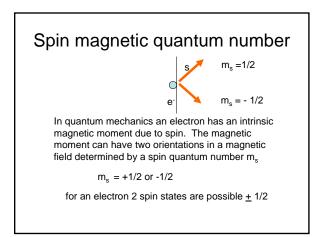
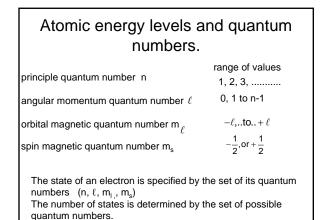
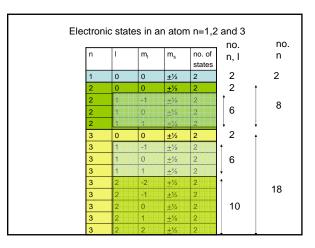

9.1 Atomic Physics. II


Quantum numbers Pauli Exclusion Principle Periodic Table Characteristic x-rays


Electrons in atoms.

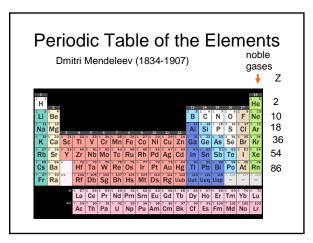

Electrons in atoms exist in discrete energy levels which can be calculated by solving a wave equation. This calculation is beyond the scope of this course.


However, the pattern of energy levels which results from a quantum mechanical rule called the Pauli Exclusion Principle. is responsible for the periodicity in the chemical properties of the different elements as seen in the Periodic Table.



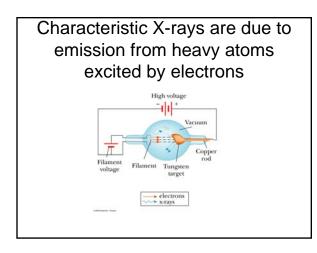
Pauli Exclusion Principle

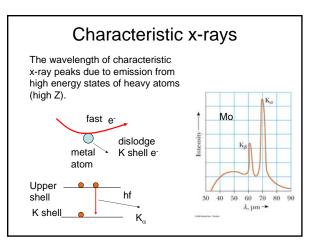
No two electrons in an atom can have the same quantum number, n, l, $m_{\rm l},$ or $m_{\rm s.}$

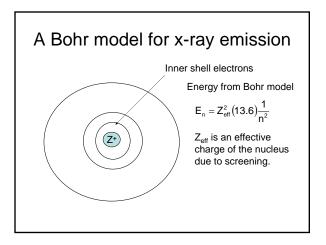

To form an atom with many electrons the electrons go into the lowest energy unoccupied state.

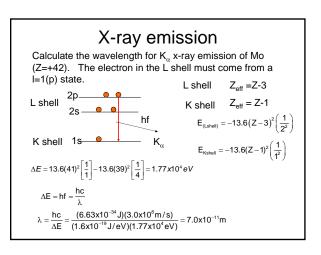
The periodic properties of the elements as shown in the Periodic Table can be explained by the Pauli Exclusion Principle by properties of filled shells.

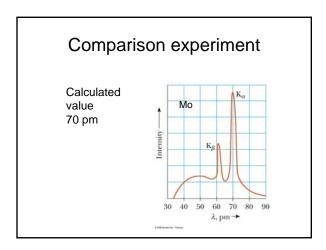
Shell and Subshell Notation					
n	Shell Symbol	e	Subshell Symbol		
1	K	0	\$		
2	L	1	p		
3	м	2	d		
4	N	3	ſ		
5	0	4	g		
6	Р	5	h		


Electrons in atoms- Shell Notation


Number of Electrons in Filled Subshells and Shells						
Shell	Subshell	Number of Electrons in Filled Subshell	Number of Electrons in Filled Shell			
K $(n = 1)$	$s(\ell = 0)$	2	2			
L (n = 2)	$s(\ell = 0) \\ p(\ell = 1)$	$\begin{pmatrix} 2\\ 6 \end{pmatrix}$	8			
M (n = 3)	$s(\ell = 0)$ $p(\ell = 1)$ $d(\ell = 2)$	$\left. \begin{array}{c} 2\\ 6\\ 10 \end{array} \right\}$	18			
N $(n = 4)$	$s(\ell = 0)$ $p(\ell = 1)$ $d(\ell = 2)$ $f(\ell = 3)$		32			




	Noble ga	0			0		ons	;	
He 2	Z= 2	1s²							
Ne 2	Z=10	1s ²	2s ²	2p ⁶					
Ar Z	Z=18	1s ²	2s ²	2p ⁶	3s ²	3p ⁶			
Kr Z	Z= 36	1s ²	2s ²	2p ⁶	3s ²	3p ⁶	3d ¹⁰	4s ²	4p ^e


Electronic Configurations of Some Elements										
z	Symbol	Ground-State Configuration		Ionization Energy (eV)	z	Symbol	Ground-State Configuration		Ionization Energy (eV	
1	н		131	13,595	19	К	[Ar]	441	4.539	
2	He		112	24,581	20	Ca		4x2	6.111	
Long Land	255	STORNEY	Careton	000000	21	Sc		3d4x2	6.54	
3	Li	[He]	211	5,390	22	Ti		$3d^{2}4s^{2}$	6.83	
4	Be		$2s^{2}$	9.320	23	v		3474x2	6.74	
5	в		2s22p1	8.296	24	Cr		34541	6.76	
6	C		$2s^22p^2$	11.256	25	Mn		$3d^{5}4x^{2}$	7.432	
7	N		2,522/3	14.545	26	Fe		3.d*4x2	7.87	
8	0		2,2204	13.614	27	Co		$3d^{7}4s^{2}$	7,86	
9	F		252203	17.418	28	Ni		$3d^{n}4s^{2}$	7.633	
10	Ne		2,220	21.559	29	Cu		3d204s1	7.724	
	10 mm				30	Zn		3420452	9.391	
11	Na	[Ne]	351	5.138	31	Ga		3d2*4s24p1	6.00	
12	Mg		3.12	7.644	32	Ge		34204524p2	7.88	
13	Al		3s23p1	5.984	33	As		3d184s24p2	9.81	
14	54		312302	8.149	34	Se		3d284s24p8	9.75	
15	P		352303	10.484	35	Br		34294+7405	11.84	
16	s		3s23p1	10.357	36	Kr		3d184524ph	13.996	
17	CI		3,2303	13.01						
18	Ar		$3s^23p^6$	15.755						

