4.3 Lenses

Images formed by refraction
Images formed by a thin lens

Real Image formed by refraction

Image formed by refraction

- Light rays are deflected by refraction through media with different refractive indexes.
- An image is formed by refraction across flat or curved interfaces and by passage through lenses.

Converging Lenses

Fatter in the middle.
Cause light to converge toward the optic axis

Ray tracing for lenses

- A line parallel to the lens axis passes through the focal point
- A line through the center of the lens passes through undeflected.

Ray diagram for a converging lenses
\qquad
-

Simulation of image formation by a

 lenshttp://qbx6.Itu.edu/s_schneider/physlets/main/opticsbench.shtml

PHYSLETS were developed at Davidson University by Wolfgang Christian.

Question

How will an object viewed through a converging lens appear as the lens is brought closer to the object?

Parallel light though a diverging lens appears to go through the focal point.

A virtual image is formed.

Question

How will the image of an object formed by a diverging lens change as the lens is brought closer to the object?

Thin lens equation.

p and q are positive if light passes through
p is positive for real objects
f is positive for converging lenses
f is negative for diverging lenses
q is positive for real images
q is negative for virtual images.

Example

An object is placed 30 cm in front of a converging lens with focal length 10 cm . Find the object distance and magnification.

Example

An object is placed 30 cm in front of a converging lens with focal length 10 cm . Find the object distance and magnification.

Ray diagram.
$\frac{1}{\mathrm{p}}+\frac{1}{\mathrm{q}}=\frac{1}{\mathrm{f}}$
$\frac{1}{\mathrm{q}}=\frac{1}{\mathrm{f}}-\frac{1}{\mathrm{p}}$
$q=\frac{f p}{p-f}=\frac{(10)(30)}{30-10}=15 \mathrm{~cm}$

$$
\stackrel{+}{\bullet} 30.0 \mathrm{~cm} \xrightarrow{\mid-10.0 \mathrm{cn} *}
$$

Inverted
Reduced

Example

An object is placed 30 cm in front of a diverging lens with a focal length of -10 cm . Find the image distance and magnification
$\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$
$\frac{1}{q}=\frac{1}{f}-\frac{1}{p}$
$\mathrm{q}=\frac{\mathrm{fp}}{\mathrm{p}-\mathrm{f}}=\frac{(-10)(30)}{30-(-10)}=-7.5 \mathrm{~cm}$

Virtual image
$M=-\frac{q}{p}=-\frac{-7.5}{30}=0.25 \quad \begin{aligned} & \text { Upright image } \\ & \text { reduced }\end{aligned}$

