3.1 Reflection and Refraction

- Geometrical Optics

Christian Huygens

Geometrical optics

In geometrical optics light waves are considered to move in straight lines. This is a good description as long as the waves do not pass through small openings (compared to λ)

- Reflection
- Refraction

Rays are perpendicular to wave fronts

Reflection

- Two general types of reflection
- Specular reflection
- Diffuse reflection
- Most of geometric optics deals with specular reflection.
- However, most of the time ambient lighting is due to diffuse reflection.

Law of Reflection

The angle of reflection equals the angle of incidence

Multiple reflections

- For multiple reflections use the law of reflection for each reflecting surface.

Full length mirror

A 6 ft tall man wants to install a mirror tall enough to see his whole body. How tall a mirror is needed?

$h_{\text {mirror }}=1 / 2\left(h_{1}+h_{2}\right)=1 / 2(6)=3 \mathrm{ft}$

Refraction

- Refraction is the bending of light when it passes across an interface between two materials.
- The bending is due to the differences in the speed of light in different media.
- The index of refraction of a material n_{i} is the ratio of the speed of light in a vacuum c to the speed of light in the material v_{i}

$$
\mathrm{n}_{\mathrm{i}}=\frac{\mathrm{c}}{\mathrm{v}_{\mathrm{i}}}
$$

Refraction and Reflection

The light beam (3) is refracted at the interface.

Transmission across an interface

The speed of the wave changes.
The frequency remains the same.
The wavelength changes

Snell's Law of Refraction

$$
\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}
$$

Going from air to glass

Refractive index matching

- A transparent object can be made invisible if the index of refraction of the surrounding media is made the same as that of the object.

Physical picture for Snell's Law

One end of the wave front slows down.
The wave front changes direction.

Example 22.4

Show that light going through a flat slab is not deviated in angle.

First interface

$$
\mathrm{n}_{1} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2}
$$

Second interface
angle of incidence $=\theta_{2}$ $n_{2} \sin \theta_{2}=n_{3} \sin \theta_{3}$

then $\quad n_{1} \sin \theta_{1}=n_{3} \sin \theta_{3}$
since $n_{1}=n_{3} \quad \theta_{1}=\theta_{3}$

