2.2 Doppler Effect

Beats Doppler Effect. Shock Waves

Tuning musical instruments

The beat frequency for two musical instruments is zero when the two are in tune. (have the same frequency)

Doppler Effect

Doppler effect- the shift in frequency of a wave where the source and observer are moving relative to one another.

Doppler effect

Two different cases:

Observer moving – Relative velocity changes Source moving- Wavelength changes

$$f = \frac{v}{\lambda}$$

Approximate solution at low speeds. Source moving toward observer. $f_{o} = \frac{v}{v - v_{s}} f_{s} = \frac{v}{v(1 - \frac{v_{s}}{v})} f_{s} = \frac{1}{1 - \frac{v_{s}}{v}} f_{s}$ Using the relation $\frac{1}{1 - x} \approx 1 + x \qquad \text{When } x <<1$ At low speed $v_{s} <<v$ $f_{o} \approx (1 + \frac{v_{s}}{v}) f_{s}$

Positive sign when approaching Negative sign when moving away.

