

Speed of sound Energy and Intensity Spherical and Plane waves. Interference of sound waves

	TABLE 14.1		
	Speeds of Sound in Various Media		
—	Medium	v (m/s)	
$v = \sqrt{\frac{B}{\rho}}$	Gases		
$v = \sqrt{-2}$	Air $(0^{\circ}C)$	331	
γp	Air (100°C)	386	
	Hydrogen (0°C)	1 290	
	Oxygen (0°C)	317	
	Helium (0°C)	972	
Why is the speed of sound higher in Helium	Liquids at 25°C		
	Water	1 490	
•	Methyl alcohol	1 140	
n in air?	Sea water	1 530	
ny is the speed of	Solids		
ound higher in water	Aluminum	5 100	
an in air?	Copper	3 560	
	Iron	5 130	
	Lead	1 3 2 0	
	Vulcanized rubber	54	

Find the speed of sound in air at 20° C.

$$v = 331\sqrt{\frac{T}{273}}$$

 $v = 331\sqrt{\frac{273 + 20}{273}} = 343$ m/s
For calculations use v=340 m/s

The ear is capable of distinguishing a wide range of sound intensities.	TABLE 14.2 Intensity Levels in Decibels for Different Sources	
		Nearby jet airplane
	Jackhammer, machine gun	130
	Siren, rock concert	120
	Subway, power mower	100
	Busy traffic	80
	Vacuum cleaner	70
	Normal conversation	50
	Mosquito buzzing	40
	Whisper	30
	Rustling leaves	10
	Threshold of hearing	0

Suppose you are standing near a loudspeaker that can is blasting away with 100 W of audio power. How far away from the speaker should you stand if you want to hear a sound level of 120 dB. (assume that the sound is emitted uniformly in all directions.)

$$I = \frac{P}{A} = \frac{P}{4\pi r^2}$$
$$r = \sqrt{\frac{P}{4\pi l}} = \sqrt{\frac{100W}{4\pi (1W/m^2)}} = 2.8m$$

The sound intensity of an ipod earphone can be as much as 120 dB. How is this possible?

The earphone is placed directly in the ear. The intensity at the earphone is the power divided by a small area.

Say the area is about 1cm^{2.}

$$P = IA = 1w / m^2 (10^{-4}m^2) = 10^{-4}W$$

A small amount of power produces a high intensity.

