

Producing sound waves
Speed of sound
Energy and Intensity
Spherical and Plane waves.
Interference of sound waves

-Produced by compression and rarefaction of media (air)

- Sound waves are longitudinal
resulting in displacement in the direction of propagation.
- The displacements result in oscillations in density and pressure.

Speed of sound
Speed of sound in a fluid

$$
\begin{gathered}
V=\sqrt{\frac{B}{\rho}} \\
B=-\frac{\Delta P}{\Delta V / V} \quad \text { Bulk modulus } \\
\rho=\frac{m}{V} \quad \text { Density }
\end{gathered}
$$

Similarity to speed of a transverse wave on a string

$$
v=\sqrt{\frac{\text { elastic_property }}{\text { intertial_property }}}
$$

Speed of sound in air

$$
v=\sqrt{\frac{\gamma P}{\rho}}
$$

γ is a constant that depends on the nature of the gas $\gamma=7 / 5$ for air.

P - Pressure
ρ - Density
Since P is proportional to the absolute temperature T by the ideal gas law. $\quad P V=n R T$

$$
v \text { is dependent on } T \quad v=331 \sqrt{\frac{T}{273}} \quad(\mathrm{~m} / \mathrm{s})
$$

Energy and Intensity of sound waves
 power $\quad \mathrm{P}=\frac{\text { energy }}{\text { time }}$

$$
\text { Intensity } \quad I=\frac{\text { power }}{\text { area }}=\frac{P}{A} \quad\left(\text { units } W / m^{2}\right)
$$

Sound intensity level

The decibel is a measure of the sound intensity level

$$
\beta=10 \log \left(\frac{I}{I_{o}}\right) \quad \text { decibels }(\mathrm{dB})
$$

$$
\mathrm{I}_{0}=10^{-12} \mathrm{~W} / \mathrm{m}^{2} \quad \text { the threshold of hearing }
$$

note - decibel is a logarithmic unit. It covers a wide range of intensities.

The ear is capable of distinguishing a wide range of sound intensities.	TABLE 14.2	
	Intensity Levels in Decibels for Different Sources	
	Source of Sound	$\beta(\mathrm{dB})$
	Nearby jet airplane	150
	Jackhammer, machine gun	130
	Siren, rock concert	120
	Subway, power mower	100
	Busy traffic	80
	Vacuum cleaner	70
	Normal conversation	50
	Mosquito burzing	40
	Whisper	30
	Rustling leaves	10
	Threshold of hearing	0
	-mbion	

Question

What is the intensity
of sound at a rock
concert? (W/m²)

$$
\begin{gathered}
\beta=10 \log \left(\frac{I}{I_{0}}\right)=120 \\
\log \left(\frac{I}{I_{0}}\right)=\frac{120}{10}=12 \\
\frac{I}{I_{0}}=10^{12}
\end{gathered}
$$

$\mathrm{I}=10^{12} \mathrm{I}_{0}=10^{12} \cdot 10^{-12}=1 \quad \mathrm{~W} / \mathrm{m}^{2}$

Spherical and plane waves

$$
\mathrm{A}=4 \pi \mathrm{r}^{2} \quad \text { area of sphere }
$$

\qquad
As sound spreads out uniformly from a point source
The intensity decreases as $1 / \mathrm{r}^{2}$

$$
I=\frac{P}{4 \pi r^{2}}
$$

Suppose you are standing near a loudspeaker that can is blasting away with 100 W of audio power. How far away from the speaker should you stand if you want to hear a sound level of 120 dB . (assume that the sound is emitted uniformly in all directions.)

$$
\begin{gathered}
I=\frac{P}{A}=\frac{P}{4 \pi r^{2}} \\
r=\sqrt{\frac{P}{4 \pi I}}=\sqrt{\frac{100 W}{4 \pi\left(1 \mathrm{~W} / \mathrm{m}^{2}\right)}}=2.8 \mathrm{~m}
\end{gathered}
$$

Question 1

The sound intensity of an ipod earphone can be as much as 120 dB . How is this possible?
A) The ipod is very powerful
B) The area of the earphone is very small
C) The ipod is a digital device
D) Rock music can be very loud

The sound intensity of an ipod earphone can be as much as 120 dB . How is this possible?

The earphone is placed directly in the ear. The intensity at the earphone is the power divided by a small area.

Say the area is about $1 \mathrm{~cm}^{2}$.
$P=I A=1 \mathrm{w} / \mathrm{m}^{2}\left(10^{-4} \mathrm{~m}^{2}\right)=10^{-4} \mathrm{~W}$

A small amount of power produces a high intensity.

Interference of sound waves

Two sound waves superimposed
Constructive Interference

Destructive Interference

Question 2
The sound level in a truck is 20 dB greater than the sound level in a Strarbucks cafe. If the intensity in the cafe is $10^{-7} \mathrm{~W} / \mathrm{m}^{2}$ the intensity in the truck is \qquad $\mathrm{W} / \mathrm{m}^{2}$.
A) 20×10^{-7}
B) 10^{-9}
C) 10^{-5}
D) 20

Noise canceling headphones

Interference of sound waves

Phase shift due to path differences

\qquad Speaker

> When
$r_{2}-r_{1}=m \lambda$
Constructive Interference
$\wedge \sqrt{V}$
When $\quad r_{2}-r_{1}=(m+1 / 2) \lambda$ Destructive Interference m is any integer

Example

An experiment is performed to measure the speed of sound using by separating the sound from a single source along two separate paths with different path lengths and combining them at the detector. For a frequency of 3.0 kHz (assume $\mathrm{v}_{\text {sound }}=340 \mathrm{~m} / \mathrm{s}$);
A) What would the smallest path difference be to observe a minimum in intensity

$$
r_{2}-r_{1}=\frac{\lambda}{2}=\frac{v}{2 \mathrm{f}}=\frac{340 \mathrm{~m} / \mathrm{s}}{2\left(3 \times 10^{3} \mathrm{~s}^{-1}\right)}=5.7 \mathrm{~cm}
$$

B) What would the smallest (non-zero) path difference be to observe a maximum in intensity.

$$
\mathrm{r}_{2}-\mathrm{r}_{1}=\quad \lambda=11 \mathrm{~cm}
$$

Example 14.6 Path difference for two sources.

At position- P-the listener hears the first minimum in sound intensity. Find the frequency of the oscillation.
$v_{\text {sound }}=340 \mathrm{~m} / \mathrm{s}$
At position P the path difference is equal to $\lambda / 2$. (first minimum) destructive interference.

$$
\begin{aligned}
& \frac{\lambda}{2}=r_{2}-r_{1}=0.13 \mathrm{~m} \\
& \lambda=2(0.13)=0.26 \mathrm{~m} \\
& \mathrm{f}=\frac{\mathrm{v}}{\lambda}=\frac{340 \mathrm{~m} / \mathrm{s}}{0.26 \mathrm{~m}}=1.31 \times 10^{3} \mathrm{~Hz}
\end{aligned}
$$

