ANSWER KEY
Physics 1B(b) Quiz 3
Winter 2010
Refl in series $>$ Ref in paraldd ${ }^{\text {sion } B}$
$\Rightarrow \tau_{\text {series }}>$ parallel $_{\Rightarrow} \Rightarrow$ charges up faster than A
Problem 1: I charge up a capacitor C in the following configurations. Which configuration charges the capacitor faster?
(a) A charges up faster than B
(b) B charges up faster than A
(c) Both A and B charge up at the same rate

- Tire constant $=\tau=R C=$
- Boga time constant means longer tine to change up p A

Problem 2: The resistivity of tungsten is $5.6 \times 10^{-8} \mathrm{ohms}-\mathrm{m}$. If I make a light bulb filament from tungsten wire that has a radius of .01 mm designed for a 100 W light bulb with 120 V , what is the length of the wire I need in the filament?
(a) 0.340 m
(b) 0.100 m

$$
\begin{aligned}
& R=\frac{p L}{A} \text { and } P=\frac{(\Delta V)^{2}}{R}=R=\frac{(\Delta V)^{2}}{P} \\
& \Rightarrow \frac{(\Delta V)^{2}}{P}=\frac{p L}{A} \Rightarrow L=\frac{A(\Delta V)^{2}}{P P}=\frac{\pi\left(10^{-5} \mathrm{~m}\right)^{2} \cdot(120 \mathrm{~V})^{2}}{\left(5.6 \times 10^{-8} \Omega \cdot \mathrm{~m}\right)(100 \mathrm{~W})}
\end{aligned}
$$

(c) 0.679 m
(d) 0.808 m

Problem 3: When I close the switch in the circuit shown, the capacitor begins to $\approx .808 \mathrm{~m}$ charge. What is the current in the resistor after 50 milliseconds?
(a) $1.21 \times 10^{-4} \mathrm{~A}$
(b) $6.07 \times 10^{-3} \mathrm{~A}$
(c) $6.07 \times 10^{-5} \mathrm{~A}$
(d) Zero

Kirchhoff's Lop Rule:

$$
\begin{aligned}
& \varepsilon-I R-\frac{Q}{C}=0 \\
A+ & Q_{\text {max }}, I=0 \\
\Rightarrow & \varepsilon-\not I^{0}-\frac{Q_{\text {max }}}{C}=0 \\
\Rightarrow & Q_{\text {max }}=\varepsilon C
\end{aligned}
$$

$$
\tau=R C
$$

$$
=\left(0^{-6} \mathrm{~F}\right)\left(10^{5} \Omega\right)
$$

Capacitor chase rip en:

$$
=0.1 \mathrm{~s}
$$

$$
\begin{aligned}
Q & =Q_{\max }\left(1-e^{-t / R}\right) \\
& =\varepsilon c\left(1-e^{-5 \times 0^{-5} / 115}\right)=\varepsilon c\left(1-e^{-0.5}\right) \\
1 & =(10 V)\left(10^{-6} \mathrm{~F}\right)(.373)=3.93 \times 10^{-6} \mathrm{C}
\end{aligned}
$$

Bork to hop pule, $10 \mathrm{~V}-I\left(10^{5} \Omega\right)-\frac{3.93 \times 10^{-6}}{10^{-6} \mathrm{~F}} \subseteq 0$

$$
\Rightarrow I=6.07 \times 10^{-5} \mathrm{~A}
$$

Version B

Problem 4: Referring to the previous problem, what is the charge on the capacitor after 100 milliseconds?

After 100 ms ,
(a) $5.18 \times 10^{-5} \mathrm{C}$
(b) $6.32 \times 10^{-6} \mathrm{C}$
(c) $3.68 \times 10^{-8} \mathrm{C}$
(d) Zero

$$
Q=Q_{\max }\left(1-e^{-t / \tau}\right)
$$

$\Rightarrow Q=(10 \mathrm{~V})\left(10^{-6} \mathrm{~F}\right)\left(1-e^{-0.150 .1 \mathrm{~s}}\right)=6.32 \times 10^{-6} \mathrm{C}$

Problem 5: I have a 12 V battery with an internal resistance that is low (i.e., $\mathrm{r}=$ negligible) with two resistors $R_{1}=100 \mathrm{ohms}$ and $R_{2}=50 \mathrm{ohms}$. I wire up the components in two different ways as shown. The power dissipated in the circuits is

$$
P=\frac{(\Delta v)^{2}}{R}
$$

(a) greater in A than in B
(b) the same for both A and B
(c) greater in B than in A
$R_{\text {off }}$ scions $>R_{\text {of l para bel }}$
\Rightarrow Pow disciple in A is rater

Problem 6: What is the total resistance of the circuit below?
(a) 1400.0 ohms
(b) 666.7 ohms
(c) 366.7 ohms
(d) 837.2 ohms
(e) None of the alkane

Problem 7: Immediately after I close the switch in the circuit shown, what is the current in R_{1} ?
(a) zero
(b) 0.10 A
(c) 0.20 A
(d) 0.05 A

Inenetiately after I close the switch, $t \sim 0$.

$$
\begin{aligned}
\Rightarrow Q & =Q_{\max }\left(1-e^{-0 s / \tau}\right) \\
& =Q_{\max }(1-1)=0 \\
& \Rightarrow Q=0
\end{aligned}
$$

\rightarrow therefore, circuit essentially be comes 2

Version B

Problem 8: Referring to the circuit above, what is the charge on the capacitor after a long time? Is there a current in R_{1} ?
(a) $10^{-7} \mathrm{C}$ and no current in R_{1}

After a long time, $t \rightarrow \infty$
$\Rightarrow Q_{\text {max }}=\varepsilon C$

$$
=(10 \mathrm{~V})\left(10^{-6} \mathrm{~F}\right)=10^{5} \mathrm{C}
$$

(d) $10^{-5} \mathrm{C}$ and no current in R_{1}
it will still have a
Problem 9: Use Kirchoff's rules to solve the following circuit. What is the current through the 5 ohm resistor? (Hint: Start at point "a" and go around each of the loops. Define a current direction.)
(a) 1.00 A
(b) 1.25 A
(c) 1.50 A
(d) 2.00 A

Problem 10: A long, long time ago when I was young, one of the things at Christmas that drove me crazy was the Christmas tree lights because very often none of them lit up. How could this have happened?
(a) I forgot to plug the string of lights in
(b) They were connected in series and one burnt out bulb opened the circuit
(c) Tony strings were connected together and a fuse blew
(d) All of these
(e) None of these
Mark Version B on your Scantron

Junction Rule: $I_{2}=I_{1}+I_{3}$
LoopRule:
Rightmost Loop: $20 \mathrm{~V}-(10 \Omega) I_{3}-(5 \Omega) I_{2}=0$

$$
\Rightarrow 4 \mathrm{~A}-2 I_{3}-I_{2}=0
$$

Leftmost Loop: $10 \mathrm{~V}-(5 \Omega) I_{2}-(10 \Omega) I_{1}=0$

$$
\Rightarrow 2 \mathrm{~A}-I_{2}-2 I_{1}=0
$$

$$
\begin{gathered}
\Rightarrow 6 A-2\left(I_{1}+I_{3}\right)-2 I_{2}=0 \\
\Rightarrow 6 A-2 I_{2}-2 I_{2}=0 \\
\Rightarrow 6 A=4 I_{2} \\
\Rightarrow I_{2}=1.5 \mathrm{~A}
\end{gathered}
$$

