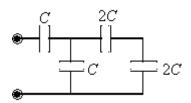
Class: _____ Date: _____

ID: A

quiz2

Multiple Choice


Identify the letter of the choice that best completes the statement or answers the question.

- 1. If an electron is accelerated from rest through a potential difference of 1 200 V, find its approximate velocity at the end of this process. ($e = 1.6 \times 10^{-19} \text{ C}$; $m_e = 9.1 \times 10^{-31} \text{ kg}$)
 - a. $1.0 \times 10^7 \text{ m/s}$
 - b. $2.1 \times 10^7 \text{ m/s}$
 - c. $4.8 \times 10^7 \,\text{m/s}$
 - d. $1.4 \times 10^7 \text{ m/s}$
 - e. $2.5 \times 10^7 \,\text{m/s}$
 - 2. Two point charges of values +3.4 and +6.6 μ C are separated by 0.10 m. What is the electrical potential at the point midway between the two point charges? ($k_e = 8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}$)
 - a. $+3.6 \times 10^6 \text{ V}$
 - b. $+0.90 \times 10^6 \text{ V}$
 - c. $-0.90 \times 10^6 \text{ V}$
 - d. $-3.6 \times 10^6 \text{ V}$
 - e. $+1.8 \times 10^6 \text{ V}$
 - 3. Two protons, each of charge 1.60×10^{-19} C, are 2.00×10^{-5} m apart. What is the change in potential energy if they are brought 1.00×10^{-5} m closer together? ($k_e = 8.99 \times 10^9$ N·m²/C²)
 - a. $3.20 \times 10^{-16} \text{ J}$
 - b. $1.60 \times 10^{-11} \text{ J}$
 - c. $3.20 \times 10^{-19} \text{ J}$
 - d. $1.60 \times 10^{-14} \text{ J}$
 - e. $1.15 \times 10^{-23} \text{ J}$
 - 4. There is a hollow, conducting, uncharged sphere with a negative charge inside the sphere. Consider the electrical potential at the inner and outer surfaces of the sphere. Which of the following is true?

- a. The potential on the outer surface is greater.
- b. The potential on the inner surface is greater.
- c. The potentials on both surfaces are zero.
- d. The potentials on both surfaces are equal but not zero.
- e. More information is needed.

5. If $C = 18 \mu$ F, determine the equivalent capacitance for the combination shown.

- a. 18 μF
- b. $10 \,\mu F$
- c. $16 \,\mu\text{F}$
- d. $12 \mu F$
- e. $14 \mu F$
- 6. A pair of parallel plates, forming a capacitor, are connected to a battery. While the capacitor is still connected to the battery maintaining a constant voltage, the plates are pulled apart to double their original distance. What is the ratio of the final energy stored to the original energy stored?
 - a. 1/4
 - b. 1/8
 - c. 1/2
 - d. 2
 - e. 1
- 7. A parallel-plate capacitor has dimensions 4.0 cm \times 5.0 cm. The plates are separated by a 1.0-mm thickness of paper (dielectric constant $\kappa = 3.7$). What is the charge that can be stored on this capacitor, when connected to a 1.5-V battery? ($\varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2/\text{N} \cdot \text{m}^2$)
 - a. 4.8×10^{-11} C
 - b. 4.0×10^{-10} C
 - c. 4.8×10^{-12} C
 - d. 2.0×10^{-12} C
 - e. $9.8 \times 10^{-11} \text{ C}$
- 8. Three particles are located on the vertices of an equilateral triangle of sidelength 5.7cm; two of these particles have charges -1 nC and the remaining one has charge +2nC. Find the value of the potential at the center of the triangle, i.e. at the interior point equidistant to the three vertices.
 - a. 0 V

c. 1100 V

b. 1600 V

d. 550 V

quiz2 Answer Section

MULTIPLE CHOICE

1. ANS: B	DIF: 2	TOP: 16.1 Potential Difference and Electric Potential

2. ANS: E DIF: 2

TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges, 16.3 Potentials and Charged Conductors, 16.4 Equipotential Surfaces

3. ANS: E DIF: 2

TOP: 16.2 Electric Potential and Potential Energy Due to Point Charges, 16.3 Potentials and Charged Conductors, 16.4 Equipotential Surfaces

4. ANS: D DIF: 2 TOP: 16.6 Capacitance

5. ANS: D DIF: 2

TOP: 16.7 The Parallel-Plate Capacitor, 16.8 Combinations of Capacitors

6. ANS: C DIF: 2 TOP: 16.10 Capacitors with Dielectrics 7. ANS: E DIF: 3 TOP: 16.10 Capacitors with Dielectrics

8. ANS: A