Class:

w10q1

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

- 1. A spherical volume of space has an electric field of intensity 100 N/C directed radially outward from its surface of radius 0.600 m. What is the net charge enclosed within this surface?
 - a. 6.8 nC
 - b. 4.0 nC
 - c. -6.8 nC
 - d. -4.0 nC
 - e. 6.0 nC
- 2. Imagine a charge of -5nC placed at the position x=0, y=+1 cm and another charge of +15nC placed at x=-3 cm, y=1 cm. Find the magnitude of the force that wuld be exerted on a third charge with Q= 10nC placed at the origin
 - a. 5.9 mN c. 3.2 mN
 - b. 7.8mN d. 4.3 mN
 - 3. Two point charges each have a value of 30.0 mC and are separated by a distance of 4.00 cm. What is the magnitude of the electric field midway between the two charges? ($k_e = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$)
 - a. zero
 - b. $5.1 \times 10^7 \text{ N/C}$
 - c. $10.1 \times 10^7 \text{ N/C}$
 - d. 40.5×10^7 N/C
 - e. 20.3×10^7 N/C
 - 4. Electrons in a particle beam each have a kinetic energy of 3.2×10^{-17} J. What is the magnitude of the electric field that will stop these electrons in a distance of 0.2 m? ($e = 1.6 \times 10^{-19}$ C)
 - a. 2 000 N/C
 - b. 500 N/C
 - c. 100 N/C
 - d. 1 000 N/C
 - e. 5 000 N/C
 - 5. A Van de Graaff generator (a device used for storing charge) contains a spherical metallic dome of radius 20 cm. Operating in dry air, where "atmospheric breakdown" is at $E_{\text{max}} = 3.0 \times 10^6$ N/C, what is the maximum charge that can be held on the dome? ($k_e = 8.99 \times 10^9$ N·m²/C²)
 - a. $1.2 \times 10^{-6} \text{ C}$
 - b. 2.5×10^{-6} C
 - c. 2.7×10^{-5} C
 - d. 1.3×10^{-5} C
 - e. 2.6×10^{-6} C

- 6. We have a hollow metallic sphere with charge $-5.0 \ \mu$ C and radius 5.0 cm. We insert a +10 μ C charge at the center of the sphere through a hole in the surface. What charge now rests on the outer surface of the sphere?
 - a. $-10 \ \mu C$
 - b. -5 μC
 - c. +5 μC
 - d. +10 μC
 - e. $+15 \,\mu\text{C}$
 - 7. Two identical balls have the same amount of charge, but the charge on ball A is positive and the charge on ball B is negative. The balls are placed on a smooth, level, frictionless table whose top is an insulator. Which of the following is true?
 - a. Since the force on A is equal but opposite to the force on B, they will not move.
 - b. They will move together with constant acceleration.
 - c. Since the forces are opposite in direction, the balls will move away from each other.
 - d. Since the force on both balls is negative they will move in the negative direction.
 - e. None of the above is correct.
 - 8. A -12.0 μ C charge is placed at the origin and a second charge is placed on the x-axis at x = 0.30 m. If the resulting force on the second charge is 5.4 N in the positive x-direction, what is the value of its charge?
 - a. 4.5 μC
 - b. -4.5 nC
 - c. 45 nC
 - $d. \quad -4.5 \ \mu C$
 - e. 4.5 nC

w10q1 Answer Section

MULTIPLE CHOICE

1. ANS: B	DIF:	2	TOP:	15.9 Electric Flux and Gauss's Law
2. ANS: D				
3. ANS: A	DIF:	2	TOP:	15.4 The Electric Field
4. ANS: D	DIF:	2	TOP:	15.4 The Electric Field
5. ANS: D	DIF:	3	TOP:	15.8 The Van de Graaff Generator
6. ANS: C	DIF:	3	TOP:	15.6 Conductors in Electrostatic Equilibrium
7. ANS: E	DIF:	2	TOP:	15.6 Conductors in Electrostatic Equilibrium
8. ANS: D	DIF:	2	TOP:	15.3 Coulomb's Law