(33). The formula for the frequency of oscillation in an LC circuit is

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

Here, we must therefore have

$$
88.9 \times 10^{6}=\frac{1}{2 \pi \sqrt{1.4 \times 10^{-12} L}}
$$

which gives $L=2.2 \times 10^{-6} H$
(35). Again the need the same formula for the frequency. At the top of the band, 1 frequency of 1600 kHz means

$$
1.3 \times 10^{6}=\frac{1}{2 \pi \sqrt{2 \times 10^{-6} C}}
$$

which yields $C=7.5 \times 10^{-9} F$ and at the bottom

$$
.5 \times 10^{6}=\frac{1}{2 \pi \sqrt{2 \times 10^{-6} C}}
$$

which yields $C=5 \times 10^{-8} F$
(38). To change the voltage from 120 to 9 , we must have a ratio of $9 / 120$ for the turn number. Hence the secondary coil has $N=240 \times 9 / 120=18$. If the current in the secondary is supposed to be 400 mA , the power $.4 \times 9=3.6$ watts.

